

April 12, 2018 August 30, 2019, Revision 1

Mr. Robert Lee DTE Electric Company One Energy Plaza Detroit, MI 48226

RE: CCR Impoundment Inflow Design Flood Control System Plan: Inactive Bottom Ash Impoundment, Monroe Power Plant, DTE Energy, Monroe, Michigan

The purpose of this Inflow Design Flood Control System Plan is to document how the inflow design flood control system has been designed and constructed to meet the requirements of 40 C.F.R. § 257.82 for the Monroe Power Plant Inactive Bottom Ash Impoundment. The hydrologic and hydraulic (H&H) analysis must assess if the basin storage capacity and hydraulic outlet structures are sufficient to pass the Inflow Design Flood Event, in a safe and non-erosive manner without overtopping the embankment.

1.0 DESIGN INPUTS

Inputs for H&H analysis include:

- Design storm based on the CCR Hazard Classification
- Basin configurations
- Basin outlet conditions
- Basin hydrology; and
- Basin stage-storage.

2.0 METHODOLOGY

H&H modeling and supporting calculations were conducted using accepted practices and models. An evaluation was made of the hydraulic capacity of the outlet structures. H&H calculations for the analysis were performed using methodologies presented in:

- SCS Unit Hydrograph Method, (TR-20);
- "Urban Hydrology of Small Watersheds: Technical Release No. 55" (TR-55);
- "Earth Dams and Reservoirs: Technical Release No. 60" (TR-60); and
- NOAA Atlas 14 Point Precipitation Frequency Estimates.

The computer program HydroCAD (Version 10.0) was used to perform the H&H calculations. The existing conditions for the basin were obtained from best available reports and topographic data.

3.0 BASIN CONFIGURATION

The Inactive Bottom Ash Impoundment is an inactive CCR surface impoundment as defined by 40 CFR §257.53. It consists of a bottom ash impoundment bordered by a geosynthetic lined process wastewater ditch (anticipated construction completion in late 2019) to the north and east and the Plant cooling water discharge channel to the west, which discharges cooling water from the Monroe coal power plant to the lake. The impoundment is separated from the cooling water discharge channel by a perimeter dike. The southern boundary of the impoundment is formed by an earthen divider berm

constructed of aggregate material, which separates the impoundment from the process waste and stormwater basin to the south. The normal water surface elevation of the Inactive Bottom Ash Impoundment is approximately 574.10 ft (Plant Datum) and the state ordinary high water surface elevation of Lake Erie/the cooling water discharge channel is approximately 572.20 ft (Plant Datum). Industrial process water and storm water from the Inactive Bottom Ash Impoundment discharge into the cooling water discharge channel via an overflow weir. The overflow weir consists of a 203 foot long sharp crested weir which discharges onto a riprap apron and then into the cooling water discharge channel.

The following table provides information on the existing conditions for the basin (reflecting completion of 2019 construction work).

Existing Basin Conditions

Basin Characteristic	Basin
Dike Crest Elevation (ft)	575.94
Basin Surface Area (acres)	86.4
Initial Pool Elevation (ft)	574.10
Contributing Watershed Area (acres)	313.44
Est. Curve Number (CN)	91
Time of Concentration (min)	40.2
Spillway Characteristic	
Length (ft)	203
Material	Steel
Elevation (ft)	574.25
Outlet Type	Weir
Basin Discharge Receiving	cooling water
Waterbody/Watershed	discharge
	channel
	(Lake Erie)

Note: Elevations presented in table above are based on Plant Datum. Add 0.90 to convert elevations from Plant Datum to NAVD88.

4.0 BASIN STAGE-STORAGE

The available storage for the impoundment was calculated from the assumed initial water elevations to the dike crest. The storage was calculated using the irregular volume calculation method with elevation, surface area, and perimeter input data. The storage volumes were calculated from available topographic data.

5.0 INFLOW DESIGN STORM EVENT

The Inactive Bottom Ash Impoundment has a Hazard Potential Classification of Significant. Therefore, the minimum Inflow Design Flood Event for this basin is the 1,000-year event.

6.0 CONCLUSION

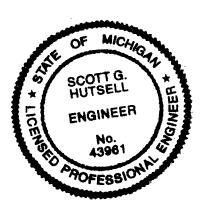
The hydrologic and hydraulic analysis and modeling indicate the basin storage capacity and hydraulic outlet structure are sufficient to pass the Inflow Design Flood Event, in a safe and non-erosive manner without overtopping the embankment. The calculated results for the H&H model are as follows:

Results	Inactive Bottom Ash Impoundment
Maximum Water Elevation (ft)	574.63
Dike Crest Elevation (ft)	575.94

The model results are provided as an attachment. Values presented for Contributing Watershed Area and Est. Curve Number have been separated for informational purposes.

7.0 AMENDMENTS TO THE PLAN

The owner or operator of the CCR unit may amend the written inflow design flood control system plan at any time provided the revised plan at any time provided the revised plan is placed in the facility's operating record as required by §257.105(g)(4). The owner or operator must amend the written inflow design flood control plan whenever there is a change in conditions that would substantially affect the written plan in effect.

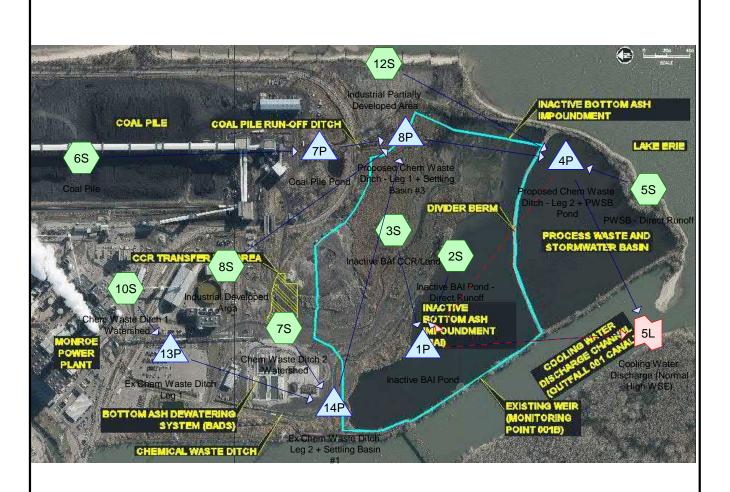


Professional Engineer Certification

I, Scott G. Hutsell, being a Registered Professional Engineer, in accordance with the Michigan Professional Engineer's Registration, do hereby certify to the best of my knowledge, information and belief, that this Inflow Design Flood Control Plan, dated August 30, 2019, meets the requirements of 40 C.F.R. § 257.82, is true and correct, and has been prepared in accordance with generally accepted good engineering practices.

SIGNATURE 4

DATE 08/30//9



Revision Log

The table below provides a description of revisions to the CCR Impoundment Inflow Design Flood Control System Plan.

1	08/30/2019	Changed text on pages 1-4 and hydrologic and hydraulic analysis results appendix.

DTE MONPP Inactive BAI - Proposed

Prepared by AECOM HydroCAD® 10.00 s/n 05704 © 2013 HydroCAD Software Solutions LLC

Printed 8/13/2019 Page 2

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
16.137	84	50-75% Grass cover, Fair, HSG D (6S)
45.300	80	Bottom Ash (3S)
80.685	86	Coal (6S)
2.320	96	Gravel surface, HSG D (12S)
10.000	86	Newly graded area, HSG B (12S)
25.190	98	Paved parking, HSG A (7S, 10S)
37.290	98	Unconnected pavement, HSG A (8S)
10.758	98	Unconnected roofs, HSG A (6S)
85.760	98	Water Surface, HSG A (2S, 5S)
313.440	91	TOTAL AREA

Printed 8/13/2019

Page 6

Time span=0.00-48.00 hrs, dt=0.01 hrs, 4801 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN

Reach routing by Sim-Route method - Pond routing by Sim-Route method

Subcatchment 2S: Inactive BAI Pond - Direct Runoff Area=48.660 ac 100.00% Impervious Runoff Depth=7.25" Flow Length=2,392' Tc=2.2 min CN=98 Runoff=584.54 cfs 29.401 af

Subcatchment 3S: Inactive BAI CCR/Land
Runoff Area=45.300 ac 0.00% Impervious Runoff Depth=5.15"
Flow Length=2,500' Slope=0.0400 '/' Tc=33.1 min CN=80 Runoff=188.78 cfs 19.436 af

Subcatchment 5S: PWSB - Direct Runoff

Runoff Area=37.100 ac 100.00% Impervious Runoff Depth=7.25"

Flow Length=1,650' Tc=2.6 min CN=98 Runoff=440.91 cfs 22.416 af

Subcatchment 6S: Coal PileRunoff Area=107.580 ac 10.00% Impervious Runoff Depth=5.84"
Flow Length=4,600' Tc=19.0 min UI Adjusted CN=86 Runoff=695.11 cfs 52.337 af

Subcatchment 7S: Chem Waste Ditch 2 Runoff Area=13.750 ac 100.00% Impervious Runoff Depth=7.25" Flow Length=2,147' Slope=0.0100 '/' Tc=27.7 min CN=98 Runoff=80.44 cfs 8.308 af

Subcatchment 8S: Industrial Developed Area Runoff Area=37.290 ac 100.00% Impervious Runoff Depth=7.25" Flow Length=1,892' Slope=0.0100 '/' Tc=25.1 min CN=98 Runoff=231.52 cfs 22.531 af

Subcatchment 10S: Chem Waste Ditch 1 Runoff Area=11.440 ac 100.00% Impervious Runoff Depth=7.25" Flow Length=2,147' Slope=0.0100 '/' Tc=27.7 min CN=98 Runoff=66.93 cfs 6.912 af

Subcatchment 12S: Industrial PartiallyRunoff Area=12.320 ac 0.00% Impervious Runoff Depth=6.07"
Flow Length=1,892' Slope=0.0100 '/' Tc=40.2 min CN=88 Runoff=51.87 cfs 6.232 af

Pond 1P: Inactive BAI Pond Peak Elev=574.63' Storage=15,786,679 cf Inflow=637.93 cfs 48.837 af Primary=158.91 cfs 42.664 af Secondary=0.00 cfs 0.000 af Outflow=158.91 cfs 42.664 af

Pond 4P: Proposed Chem Waste Ditch - Peak Elev=575.81' Storage=6,220,760 cf Inflow=947.20 cfs 223.115 af Outflow=223.28 cfs 218.924 af

Pond 7P: Coal Pile PondPeak Elev=579.30' Storage=324,789 cf Inflow=695.11 cfs 52.337 af Outflow=689.66 cfs 52.293 af

Pond 8P: Proposed Chem Waste Ditch - Peak Elev=578.24' Storage=7.785 af Inflow=933.36 cfs 194.573 af Outflow=856.72 cfs 194.489 af

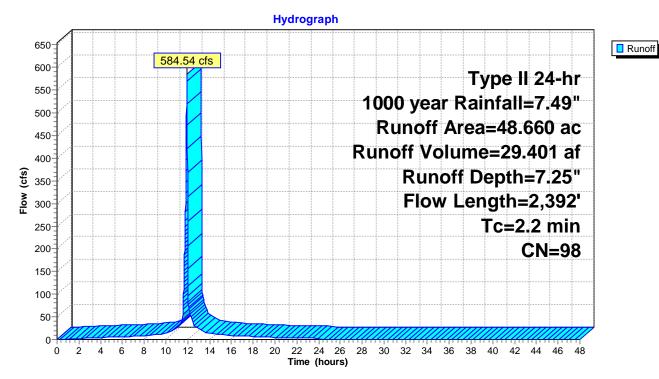
Pond 13P: Ex Chem Waste Ditch Leg 1 Peak Elev=581.87' Storage=2.380 af Inflow=83.34 cfs 72.010 af 24.0" Round Culvert x 2.00 n=0.020 L=155.0' S=0.0032 '/' Outflow=44.65 cfs 71.857 af

Pond 14P: Ex Chem Waste Ditch Leg 2 + Peak Elev=578.30' Storage=4.397 af Inflow=120.49 cfs 119.821 af Outflow=218.19 cfs 119.771 af

Link 5L: Cooling Water Discharge (Normal High WSE) Inflow=370.77 cfs 261.566 af Primary=370.77 cfs 261.566 af

Total Runoff Area = 313.440 ac Runoff Volume = 167.573 af Average Runoff Depth = 6.42" 49.27% Pervious = 154.442 ac 50.73% Impervious = 158.998 ac

Page 7


Summary for Subcatchment 2S: Inactive BAI Pond - Direct Runoff

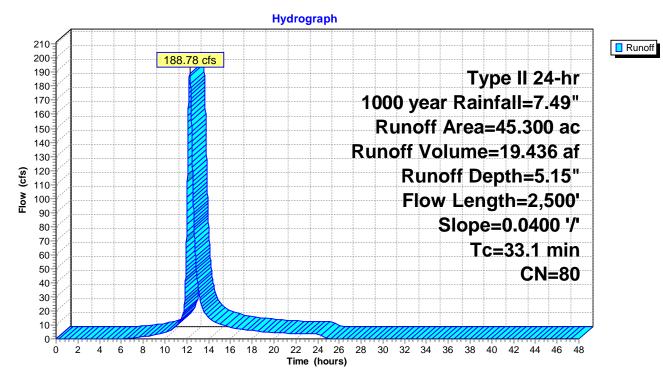
Runoff = 584.54 cfs @ 11.92 hrs, Volume= 29.401 af, Depth= 7.25"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 1000 year Rainfall=7.49"

	Area	(ac)	CN	Desc	ription		
48.660 98			Wate	er Surface,	HSG A		
-	48.660			100.0	00% Impei	vious Area	
	Tc (min)	Lengt (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	2.2	2,39	2		17.94		Lake or Reservoir, Lake Mean Depth= 10.00'

Subcatchment 2S: Inactive BAI Pond - Direct Runoff

Page 8


Summary for Subcatchment 3S: Inactive BAI CCR/Land

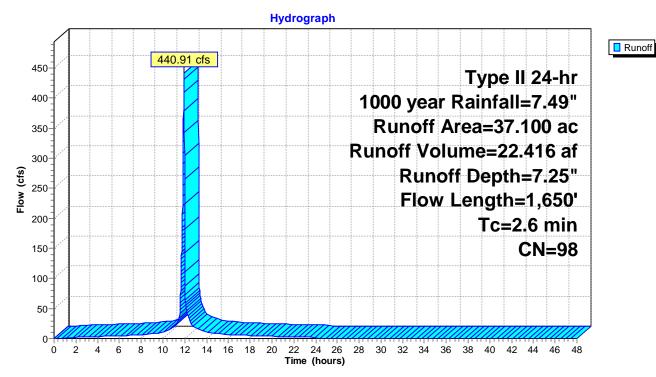
Runoff = 188.78 cfs @ 12.28 hrs, Volume= 19.436 af, Depth= 5.15"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 1000 year Rainfall=7.49"

_	Area	(ac) C	N Des	scription		
*	* 45.300 80 Bottom Ash					
	45.	300	100	0.00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description
_	33.1	2,500	0.0400	1.26		Lag/CN Method,

Subcatchment 3S: Inactive BAI CCR/Land

Page 9


Summary for Subcatchment 5S: PWSB - Direct Runoff

Runoff = 440.91 cfs @ 11.93 hrs, Volume= 22.416 af, Depth= 7.25"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 1000 year Rainfall=7.49"

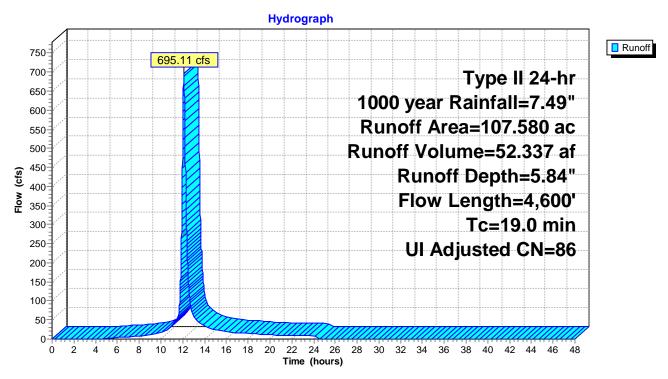
Area (ac) CN Description						
37.100 98 Water Sur					HSG A	
37.100 100.00% Impervious						
Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
2.6	1,65	50		10.46		Lake or Reservoir, Lake Mean Depth= 3.40'

Subcatchment 5S: PWSB - Direct Runoff

Page 10

Summary for Subcatchment 6S: Coal Pile

Time of concentration was calculated conservatively for the coal pile due to lack of topography for the area and information about the drainage ditches.


Runoff = 695.11 cfs @ 12.10 hrs, Volume= 52.337 af, Depth= 5.84"

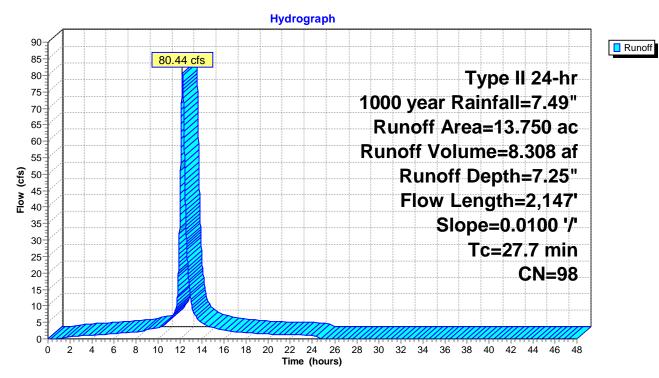
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 1000 year Rainfall=7.49"

	Area	(ac)	CN	Adj	Descript	tion				
*	80.685 86				Coal	Coal				
	10.	758	98		Unconn	ected roofs,	, HSG A			
	16.	137	84		50-75%	Grass cove	er, Fair, HSG D			
	107.	580	87	86	Weighte	ed Average,	UI Adjusted			
	96.822				90.00%	Pervious A	rea			
	10.	758			10.00%	Impervious	Area			
	10.	758			100.00%	6 Unconnec	eted			
	Тс	Lengtl		Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	9.2	4,000) (0.0010	7.25	543.56	Channel Flow,			
							Area= 75.0 sf Perim= 12.0' r= 6.25'			
							n= 0.022 Earth, clean & straight			
	6.0	100) (0.1000	0.28		Sheet Flow,			
							Grass: Short n= 0.150 P2= 2.35"			
	3.8	500) (0.1000	2.21		Shallow Concentrated Flow,			
_							Short Grass Pasture Kv= 7.0 fps			
	19.0	4,600) 7	Γotal						

Page 11

Subcatchment 6S: Coal Pile

Page 12


Summary for Subcatchment 7S: Chem Waste Ditch 2 Watershed

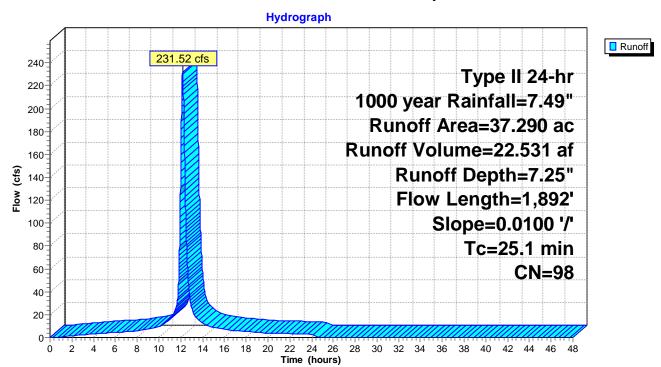
Runoff = 80.44 cfs @ 12.20 hrs, Volume= 8.308 af, Depth= 7.25"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 1000 year Rainfall=7.49"

_	Area	(ac) C	N Des	cription		
	13.	750 9	98 Pav	ed parking	, HSG A	
	13.	750	100.	00% Impe	rvious Area	ì
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	27.7	2.147	0.0100	1.29		Lag/CN Method,

Subcatchment 7S: Chem Waste Ditch 2 Watershed

Page 13


Summary for Subcatchment 8S: Industrial Developed Area

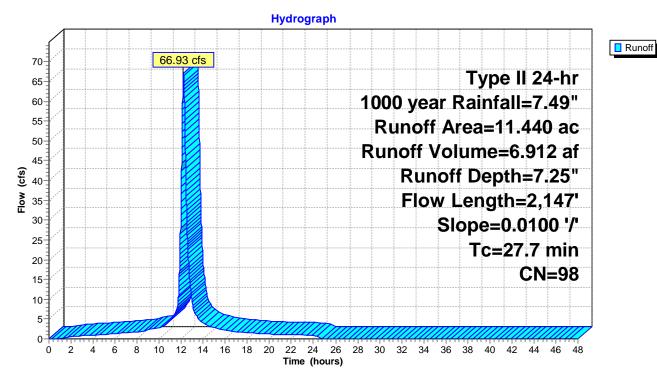
Runoff = 231.52 cfs @ 12.18 hrs, Volume= 22.531 af, Depth= 7.25"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 1000 year Rainfall=7.49"

	Area	(ac) C	N Des	cription						
	37.290 98 Unconnected pavement, HSG A									
	37.	290	100.	00% Impe	rvious Area	 a				
	37.	290	100.	00% Unco	nnected					
	То	Longth	Clana	\/alaaitr	Consoitu	Description				
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
-	25.1	1,892	0.0100	1.26	(0.0)	Lag/CN Method,				

Subcatchment 8S: Industrial Developed Area

Page 14


Summary for Subcatchment 10S: Chem Waste Ditch 1 Watershed

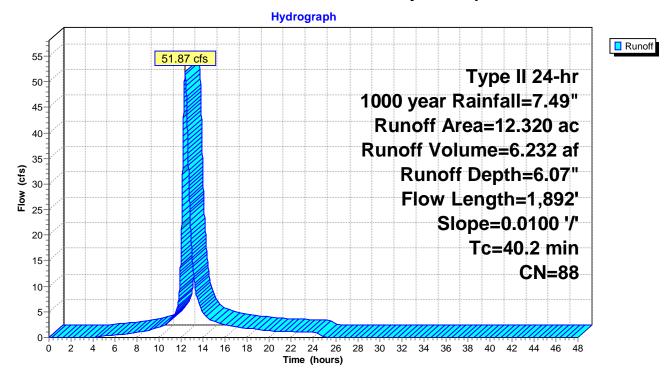
Runoff = 66.93 cfs @ 12.20 hrs, Volume= 6.912 af, Depth= 7.25"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 1000 year Rainfall=7.49"

	Area	(ac) C	N Des	cription			
11.440 98 Paved parking, HSG A							
	11.	440	100.	00% Impe	rvious Area	9	
	То	Longth	Clana	\/alaaitu	Consoitu	Description	
	Tc (min)	Length (feet)	Slope (ft/ft)	(ft/sec)	Capacity (cfs)	Description	
-	27.7		0.0100	1 29	(/	Lag/CN Method.	

Subcatchment 10S: Chem Waste Ditch 1 Watershed

Page 15


Summary for Subcatchment 12S: Industrial Partially Developed Area

Runoff = 51.87 cfs @ 12.37 hrs, Volume= 6.232 af, Depth= 6.07"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr 1000 year Rainfall=7.49"

_	Area	(ac) C	N Des	cription			
	2.	320	96 Grav	vel surface	, HSG D		
_	10.	000	86 New	/ly graded	area, HSG	В	
	12.	320	88 Wei	ghted Avei	rage		
	12.	320	100.	.00% Pervi	ous Area		
	Tc	Length	Slope	Velocity	Capacity	Description	
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	40.2	1.892	0.0100	0.78		Lag/CN Method.	

Subcatchment 12S: Industrial Partially Developed Area

Page 16

Summary for Pond 1P: Inactive BAI Pond

Storage between 576 and 577 is artificial. Should not allow water level to rise above 576, as dike will begin overtopping near the existing weir.

All model elevations are in Plant Datum. Add 0.9 to convert from Plant Datum to NAVD88.

Weir dimensions/elevation based on historical drawing 6C695-270 (weir #2). Although the drawing indicates the invert to be 574.00', this was conservatively adjusted to 574.25' to calibrate with the surveyed water elevation of 574.34' and average base flow rate of 17.64 cfs.

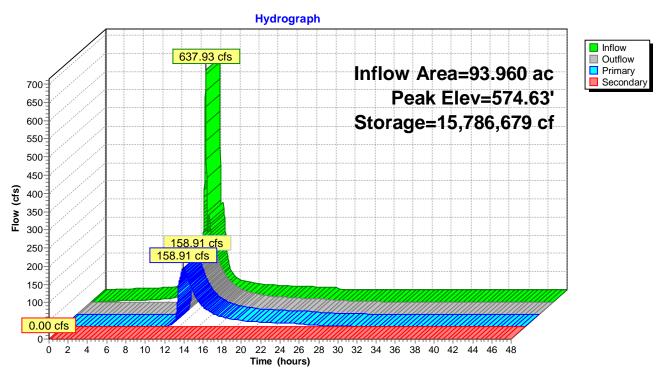
Inflow Area = 93.960 ac, 51.79% Impervious, Inflow Depth = 6.24" for 1000 year event Inflow 637.93 cfs @ 11.93 hrs, Volume= 48.837 af = Outflow 158.91 cfs @ 12.52 hrs, Volume= 42.664 af, Atten= 75%, Lag= 35.5 min 158.91 cfs @ 12.52 hrs, Volume= Primary 42.664 af Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Sim-Route method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs
Starting Elev= 574.10' Surf.Area= 1,727,285 sf Storage= 14,798,671 cf
Peak Elev= 574.63' @ 12.52 hrs Surf.Area= 1,978,401 sf Storage= 15,786,679 cf (988,008 cf above start)
Flood Elev= 575.94' Surf.Area= 2,718,646 sf Storage= 18,832,867 cf (4,034,196 cf above start)

Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= 161.4 min (932.8 - 771.4)

Volume	Invert	Avail.Storage	Storage Description
#1	555.00'	21,753,554 cf	Custom Stage Data (Irregular) Listed below (Recalc)

Page 17


Elevatio (feet		Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
555.0		1,651.3	0	0	77,623	
556.0	•	1,877.2	124,061	124,061	141,078	
557.0	,	2,314.1	203,122	327,183	286,813	
558.0	,	3,197.8	274,454	601,637	674,434	
559.0	,	4,003.1	390,503	992,140	1,135,909	
560.0	,	4,074.9	504,276	1,496,417	1,182,240	
561.0	,	4,154.9	570,374	2,066,790	1,234,794	
562.0	,	4,217.1	616,426	2,683,217	1,276,444	
563.0		4,282.6	655,967	3,339,184	1,320,951	
564.0	,	4,354.8	692,241	4,031,425	1,370,765	
565.0	,	4,428.2	728,557	4,759,982	1,422,254	
566.0	,	4,569.0	768,934	5,528,916	1,523,163	
567.0	,	4,408.8	817,745	6,346,662	1,637,703	
568.0	0 879,663	4,506.1	862,216	7,208,878	1,706,874	
569.0	0 915,793	4,610.7	897,667	8,106,545	1,782,897	
570.0	0 970,583	4,701.2	943,055	9,049,600	1,850,120	
571.0	0 1,078,279	5,020.2	1,023,959	10,073,559	2,096,948	
572.0	0 1,557,607	7,568.3	1,310,618	11,384,178	4,649,543	
573.0	0 1,624,363	7,481.1	1,590,868	12,975,046	4,754,244	
574.0	0 1,682,124	7,570.5	1,653,159	14,628,205	4,861,589	
575.0	0 2,160,656	12,380.1	1,916,405	16,544,610	12,497,404	
576.0	0 2,756,436	17,581.0	2,452,508	18,997,118	24,897,548	
577.0	0 2,756,436	17,581.0	2,756,436	21,753,554	24,915,129	
Device	Routing Ir	nvert Outlet	Devices			
#1	Primary 57	4.25' 203.0 '	long Sharp-Crest	ed Rectangular V	Veir 2 End Contraction	n(s)
	•	6.0' C	rest Height	_		` '
#2	Secondary 57		ntrolled Overtoppi	ng Dike, Cv= 2.62	2 (C= 3.28)	
	-	Head	(feet) 0.00 1.00			
		Width	(feet) 100.00 460	0.00		

Primary OutFlow Max=158.91 cfs @ 12.52 hrs HW=574.63' TW=572.20' (Dynamic Tailwater) **1=Sharp-Crested Rectangular Weir** (Weir Controls 158.91 cfs @ 2.04 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=574.10' TW=572.20' (Dynamic Tailwater) 2=Uncontrolled Overtopping Dike (Controls 0.00 cfs)

Page 18

Pond 1P: Inactive BAI Pond

Prepared by AECOM

Type II 24-hr 1000 year Rainfall=7.49" Printed 8/13/2019

HydroCAD® 10.00 s/n 05704 © 2013 HydroCAD Software Solutions LLC

Page 19

Summary for Pond 4P: Proposed Chem Waste Ditch - Leg 2 + PWSB Pond

Inflow Area = 219.480 ac, 50.27% Impervious, Inflow Depth > 12.20" for 1000 year event

Inflow 947.20 cfs @ 12.24 hrs. Volume= 223.115 af

Outflow 223.28 cfs @ 12.95 hrs, Volume= 218.924 af, Atten= 76%, Lag= 42.8 min

Primary 223.28 cfs @ 12.95 hrs, Volume= 218.924 af

Routing by Sim-Route method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Starting Elev= 574.10' Surf.Area= 1,441,227 sf Storage= 3,726,033 cf

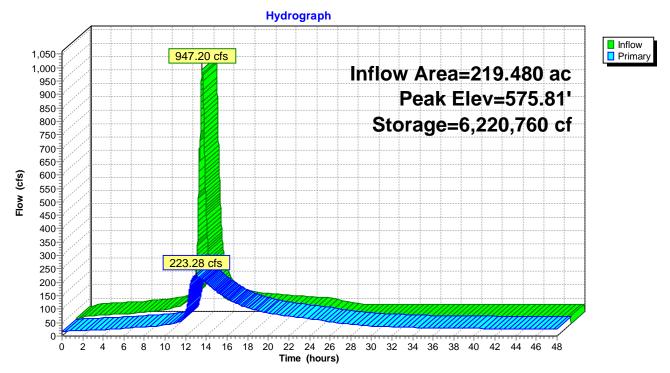
Peak Elev= 575.81' @ 12.95 hrs Surf.Area= 1,473,092 sf Storage= 6,220,760 cf (2,494,727 cf above start)

Flood Elev= 577.00' Surf.Area= 1,504,611 sf Storage= 7,991,291 cf (4,265,258 cf above start)

Plug-Flow detention time= 949.1 min calculated for 133.386 af (60% of inflow)

Center-of-Mass det. time= 141.2 min (1,250.6 - 1,109.4)

Volume	Inve	rt Avai	l.Storage	Storage Description	on		
#1	571.00	0' 9,4	95,902 cf	Custom Stage Da	ita (Irregular) Liste	d below (Recalc)	
	_						
Elevatio	n S	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(fee	t)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
571.0	0	455,392	5,928.0	0	0	455,392	
572.0	0 1	,284,243	4,716.0	834,793	834,793	1,481,997	
573.0	0 1	,386,039	4,883.0	1,334,817	2,169,611	1,609,653	
574.0	0 1	,438,953	4,846.0	1,412,413	3,582,024	1,638,709	
575.0	0 1	,461,773	4,832.0	1,450,348	5,032,372	1,650,527	
576.0	0 1	,475,756	4,875.0	1,468,759	6,501,131	1,684,095	
577.0	0 1	,504,611	4,986.0	1,490,160	7,991,291	1,771,338	
578.0	0 1	,504,611	4,986.0	1,504,611	9,495,902	1,776,324	
Davidaa	Davida	l	041	at Davidana			
Device	Routing			et Devices			
#1	Primary	573		•	d Rectangular Wei	r X 3.00 2 End Contra	ction(s)
			2.0'	Crest Height			
#2	Primary	576	.00' Cus	tom Weir/Orifice, C	cv= 2.62 (C= 3.28)		
			Hea	d (feet) 0.00 1.00	2.00		
			Wid	th (feet) 1,700.00	1,825.00 1,900.00		


Primary OutFlow Max=223.28 cfs @ 12.95 hrs HW=575.81' TW=572.20' (Dynamic Tailwater)

—1=Sharp-Crested Rectangular Weir (Weir Controls 223.28 cfs @ 5.36 fps)

-2=Custom Weir/Orifice (Controls 0.00 cfs)

Page 20

Pond 4P: Proposed Chem Waste Ditch - Leg 2 + PWSB Pond

Page 21

Summary for Pond 7P: Coal Pile Pond

[58] Hint: Peaked 0.30' above defined flood level

Inflow Area = 107.580 ac, 10.00% Impervious, Inflow Depth = 5.84" for 1000 year event

Inflow 695.11 cfs @ 12.10 hrs, Volume= 52.337 af

Outflow 689.66 cfs @ 12.13 hrs, Volume= 52.293 af, Atten= 1%, Lag= 1.5 min

Primary 689.66 cfs @ 12.13 hrs, Volume= 52.293 af

Routing by Sim-Route method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Starting Elev= 574.59' Surf.Area= 18,955 sf Storage= 5,592 cf

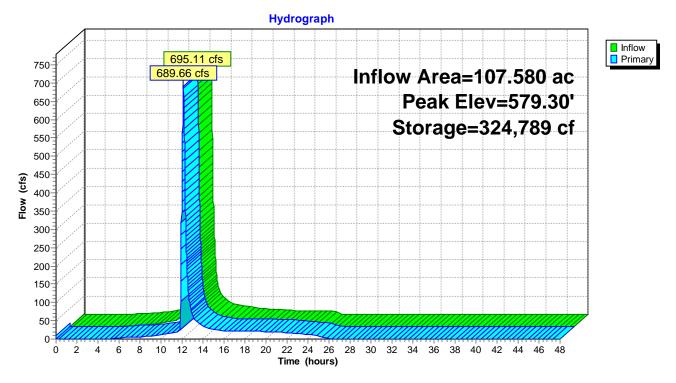
Peak Elev= 579.30' @ 12.13 hrs Surf.Area= 290,712 sf Storage= 324,789 cf (319,197 cf above start)

Flood Elev= 579.00' Surf.Area= 200,000 sf Storage= 250,600 cf (245,008 cf above start)

Plug-Flow detention time= 70.5 min calculated for 52.165 af (100% of inflow)

Center-of-Mass det. time= 66.9 min (865.7 - 798.8)

Volume	Inve	ert Avail.Sto	rage Storage	Description	
#1	574.0	0' 1,100,60	00 cf Custom	Stage Data (Pri	smatic) Listed below (Recalc)
Flanatia		Out Ana	la a Otana	Ours Otama	
Elevatio	_	Surf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
574.0	00	0	0	0	
575.0	00	32,127	16,064	16,064	
576.0	00	32,127	32,127	48,191	
577.0	00	39,065	35,596	83,787	
578.0	00	47,281	43,173	126,960	
579.0	00	200,000	123,641	250,600	
580.0		500,000	350,000	600,600	
581.0		500,000	500,000	1,100,600	
Device	Routing	Invert	Outlet Devices	S	
#1	Primary	572.00'	24.0" Round	Culvert	
	,		L= 100.0' CM	/IP, projecting, r	o headwall, Ke= 0.900
					572.00' S= 0.0000 '/' Cc= 0.900
					Flow Area= 3.14 sf
#2	Primary	579.00'		Orifice, Cv= 2.6	
		0.0.00	Head (feet) 0	•	(
				1,000.00 3,000.	00
			111001 (1001)	,555.55 5,556.	


Primary OutFlow Max=689.12 cfs @ 12.13 hrs HW=579.30' TW=577.92' (Dynamic Tailwater)

-1=Culvert (Outlet Controls 13.08 cfs @ 4.16 fps)

-2=Custom Weir/Orifice (Weir Controls 676.04 cfs @ 1.72 fps)

Page 22

Pond 7P: Coal Pile Pond

DTE MONPP Inactive BAI - Proposed

Prepared by AECOM

Type II 24-hr 1000 year Rainfall=7.49" Printed 8/13/2019

HydroCAD® 10.00 s/n 05704 © 2013 HydroCAD Software Solutions LLC

Page 23

Summary for Pond 8P: Proposed Chem Waste Ditch - Leg 1 + Settling Basin #3

[58] Hint: Peaked 0.24' above defined flood level

[80] Warning: Exceeded Pond 7P by 0.16' @ 3.95 hrs (4.48 cfs 1.624 af)

[80] Warning: Exceeded Pond 14P by 0.71' @ 12.10 hrs (372.71 cfs 6.839 af)

170.060 ac, 43.07% Impervious, Inflow Depth > 13.73" for 1000 year event

Inflow = 933.36 cfs @ 12.22 hrs, Volume= 194.573 af

856.72 cfs @ 12.24 hrs, Volume= 856.72 cfs @ 12.24 hrs, Volume= Outflow 194.489 af, Atten= 8%, Lag= 0.9 min

Primary = 194,489 af

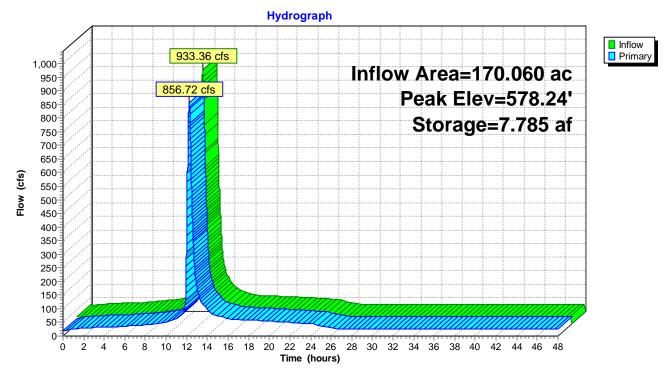
Routing by Sim-Route method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Starting Elev= 574.59' Surf.Area= 1.127 ac Storage= 2.171 af

Peak Elev= 578.24' @ 12.24 hrs Surf.Area= 1.947 ac Storage= 7.785 af (5.613 af above start)

Flood Elev= 578.00' Surf.Area= 1.892 ac Storage= 7.316 af (5.144 af above start)

Plug-Flow detention time= 37.7 min calculated for 192.317 af (99% of inflow)


Center-of-Mass det. time= 5.2 min (1,162.3 - 1,157.1)

<u>Volume</u>	Invert	Avail.Storage	Storage Description
#1	572.00'	9.321 af	10.00'W x 2,400.00'L x 7.00'H Prismatoid Z=2.0
Device	Routing	Invert Ou	utlet Devices
#1	Primary	He 2.5 Co	.0' long x 1.0' breadth Broad-Crested Rectangular Weir ead (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 50 3.00 pef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 31 3.32

Primary OutFlow Max=853.41 cfs @ 12.24 hrs HW=578.24' TW=575.26' (Dynamic Tailwater) 1=Broad-Crested Rectangular Weir (Weir Controls 853.41 cfs @ 6.29 fps)

Page 24

Pond 8P: Proposed Chem Waste Ditch - Leg 1 + Settling Basin #3

Prepared by AECOM

Type II 24-hr 1000 year Rainfall=7.49" Printed 8/13/2019

HydroCAD® 10.00 s/n 05704 © 2013 HydroCAD Software Solutions LLC

Page 25

Summary for Pond 13P: Ex Chem Waste Ditch Leg 1

Baseflow for normal (sunny day) conditions is 17.64 cfs (11.4 MGD), split between two existing chem waste ditch nodes to approximately reflect existing conditions as observed in site visit on March 26, 2019 (sunny day with no recent wet weather event).

Baseflow for storm event modeling is 17.64 cfs (11.4 MGD) plus maximum oil/water separator storm event flow of 8.77 cfs, which totals 26.41 cfs.

[86] Warning: Oscillations may require smaller dt (severity=1)

Inflow Area = 11.440 ac,100.00% Impervious, Inflow Depth > 75.53" for 1000 year event Inflow = 83.34 cfs @ 12.20 hrs, Volume= 72.010 af, Incl. 16.41 cfs Base Flow Outflow = 44.65 cfs @ 12.76 hrs, Volume= 71.857 af, Atten= 46%, Lag= 33.5 min

Primary = 44.65 cfs @ 12.76 hrs, Volume= 71.857 af

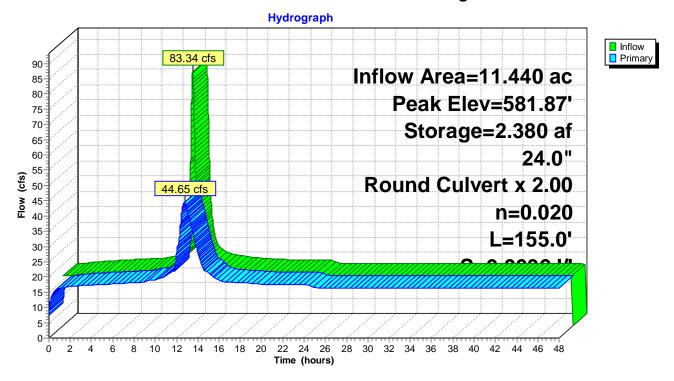
Routing by Sim-Route method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Starting Elev= 576.21' Surf.Area= 0.213 ac Storage= 0.215 af

Peak Elev= 581.87' @ 12.56 hrs Surf.Area= 0.557 ac Storage= 2.380 af (2.166 af above start)

Flood Elev= 582.00' Surf.Area= 0.565 ac Storage= 2.456 af (2.241 af above start)

Plug-Flow detention time= 18.3 min calculated for 71.627 af (99% of inflow) Center-of-Mass det. time= 6.5 min (1,380.7 - 1,374.3)


Volume	Invert	Avail.Storage	e Storage Description
#1	575.00'	7.008 a	f 10.00'W x 620.00'L x 13.00'H Prismatoid Z=2.0
Device	Routing	Invert C	Outlet Devices
#1	Primary	575.00' 2	4.0" Round Culvert X 2.00
		L	.= 155.0' CPP, projecting, no headwall, Ke= 0.900
		l	nlet / Outlet Invert= 575.00' / 574.50' S= 0.0032 '/' Cc= 0.900
		r	= 0.020 Corrugated PE, corrugated interior, Flow Area= 3.14 sf

Primary OutFlow Max=44.74 cfs @ 12.76 hrs HW=581.63' TW=576.54' (Dynamic Tailwater)

1=Culvert (Outlet Controls 44.74 cfs @ 7.12 fps)

Page 26

Pond 13P: Ex Chem Waste Ditch Leg 1

DTE MONPP Inactive BAI - Proposed

Prepared by AECOM

Type II 24-hr 1000 year Rainfall=7.49" Printed 8/13/2019

HydroCAD® 10.00 s/n 05704 © 2013 HydroCAD Software Solutions LLC

Page 27

Summary for Pond 14P: Ex Chem Waste Ditch Leg 2 + Settling Basin #1

[58] Hint: Peaked 0.30' above defined flood level [89] Warning: Qout>Qin may require smaller dt

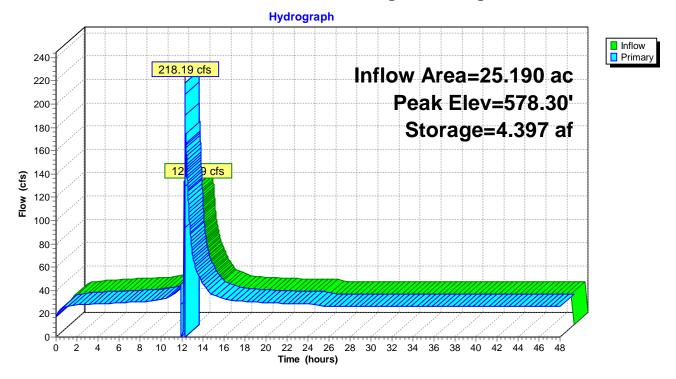
[86] Warning: Oscillations may require smaller dt (severity=4)

25.190 ac,100.00% Impervious, Inflow Depth > 57.08" for 1000 year event Inflow = 120.49 cfs @ 12.21 hrs, Volume= 119.821 af, Incl. 10.00 cfs Base Flow Outflow = 218.19 cfs @ 12.29 hrs, Volume= 119.771 af, Atten= 0%, Lag= 4.8 min Primary = 218.19 cfs @ 12.29 hrs, Volume= 119.771 af

Routing by Sim-Route method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Starting Elev= 575.08' Surf.Area= 0.688 ac Storage= 1.528 af

Peak Elev= 578.30' @ 12.28 hrs Surf.Area= 1.095 ac Storage= 4.397 af (2.869 af above start)

Flood Elev= 578.00' Surf.Area= 1.057 ac Storage= 4.073 af (2.546 af above start)


Plug-Flow detention time= 40.5 min calculated for 118.243 af (99% of inflow) Center-of-Mass det. time= 3.2 min (1,360.1 - 1,356.9)

<u>Volume</u>	Invert	Avail.Storage	Storage Description
#1	572.00'	5.194 af	10.00'W x 1,330.00'L x 7.00'H Prismatoid Z=2.0
Device	Routing	Invert C	outlet Devices
#1	Primary	Н	4.0' long x 1.0' breadth Broad-Crested Rectangular Weir ead (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 .50 3.00
			oef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.1 3.32

Primary OutFlow Max=225.87 cfs @ 12.29 hrs HW=578.26' TW=578.16' (Dynamic Tailwater) 1=Broad-Crested Rectangular Weir (Weir Controls 225.87 cfs @ 1.89 fps)

Page 28

Pond 14P: Ex Chem Waste Ditch Leg 2 + Settling Basin #1

Prepared by AECOM

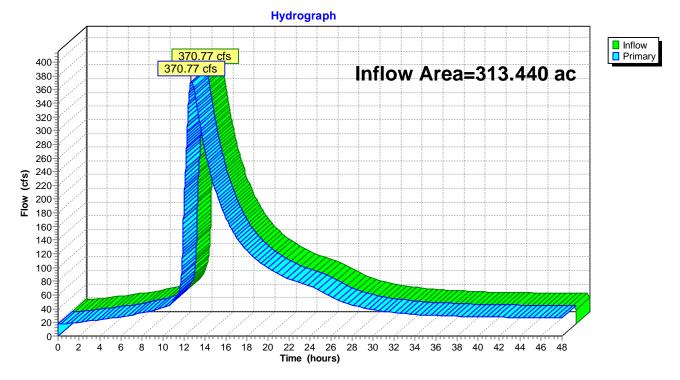
HydroCAD® 10.00 s/n 05704 © 2013 HydroCAD Software Solutions LLC

Page 29

Summary for Link 5L: Cooling Water Discharge (Normal High WSE)

Average annual high water surface elevation of Lake Erie (thus cooling water discharge also) per DTE email Thu 6/7/2018 10:44 AM.

Inflow Area = 313.440 ac, 50.73% Impervious, Inflow Depth > 10.01" for 1000 year event


Inflow = 370.77 cfs @ 12.70 hrs, Volume= 261.566 af

Primary = 370.77 cfs @ 12.71 hrs, Volume= 261.566 af, Atten= 0%, Lag= 0.6 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Fixed water surface Elevation= 572.20'

Link 5L: Cooling Water Discharge (Normal High WSE)

