

2021 Annual Groundwater Monitoring Report

Range Road Coal Combustion Residual Landfill 3600 Range Road China Township, Michigan

January 2022

Biemy

Vincent E. Buening, C.P.G. Senior Project Manager

Sarah B. Holmstrom, P.G. Senior Hydrogeologist

Prepared For: DTE Electric Company

Prepared By: TRC 1540 Eisenhower Place Ann Arbor, Michigan 48108

Dave B. McKenzie, P.E. Senior Project Engineer

TABLE OF CONTENTS

Exe	cutive	Summaryiii
1.0	Intro	oduction1
	1.1	Program Summary1
	1.2	Site Overview
	1.3	Geology/Hydrogeology2
2.0	Gro	undwater Monitoring3
	2.1	Monitoring Well Network
	2.2	Semiannual Groundwater Monitoring
		2.2.1 Data Summary
		2.2.2 Data Quality Review
		2.2.3 Groundwater Flow Rate and Direction4
3.0	Stat	istical Evaluation5
	3.1	Establishing Background Limits5
	3.2	Data Comparison to Background Limits – First 2021 Semiannual Event (May 2021)5
	3.3	Verification Resampling for the First 2021 Semiannual Event
	3.4	Data Comparison to Background Limits – Second 2021 Semiannual Event (October
		2021)
	3.5	Verification Resampling for the Second 2021 Semiannual Event7
4.0	Con	clusions and Recommendations8
5.0	Grou	undwater Monitoring Report Certification9
6.0	Refe	erences10
TAF	BLES	
Tabl		Summary of Groundwater Elevation Data – May and October 2021

Table 2	Summary of Field Data – May to Decembe	r 2021

- Table 3Comparison of Appendix III Parameter Results to Background Limits May and
June 2021
- Table 4Comparison of Appendix III Parameter Results to Background Limits October
and December 2021

FIGURES

Figure 1	Site Location Map
Figure 2	Monitoring Network and Site Plan
Figure 3	Groundwater Potentiometric Elevation Summary – May 2021
Figure 4	Groundwater Potentiometric Elevation Summary – October 2021

APPENDICES

- Appendix A Alternate Source Demonstration: Second Quarter 2021 Semiannual Detection Monitoring Sampling Event
- Appendix B Laboratory Analytical Reports
- Appendix C Data Quality Reviews
- Appendix D Uppermost Useable Aquifer Prediction Limit Update

Executive Summary

On April 17, 2015, the United States Environmental Protection Agency (USEPA) published the final rule for the regulation and management of Coal Combustion Residuals (CCR) under the Resource Conservation and Recovery Act (RCRA) (the CCR Rule), as amended. The CCR Rule, which became effective on October 19, 2015 (with amendments in 2018 and 2020), applies to the DTE Electric Company (DTE Electric) Range Road Coal Combustion Residual Landfill (RRLF) CCR unit. Pursuant to the CCR Rule, no later than January 31, 2018, and annually thereafter, the owner or operator of a CCR unit must prepare an annual groundwater monitoring and corrective action report for the CCR unit documenting the status of groundwater monitoring and corrective action for the preceding year in accordance with §257.90(e). On behalf of DTE Electric, TRC Engineers Michigan, Inc., the engineering entity of TRC, has prepared this 2021 Annual Groundwater Monitoring Report for calendar year 2021 activities at the RRLF CCR unit.

DTE remained in detection monitoring at the RRLF CCR unit in 2021. The semiannual detection monitoring events for 2021 were completed in May and October 2021 and included sampling and analyzing groundwater within the groundwater monitoring system for the indicator parameters listed in Appendix III to the CCR Rule. As part of the statistical evaluation, the data collected during detection monitoring events are evaluated to identify statistically significant increases (SSIs) in detection monitoring parameters to determine if concentrations in detection monitoring well samples exceed background levels. Detection monitoring data that has been collected and evaluated in 2021 are presented in this report.

Potential SSIs over background limits were noted for several Appendix III constituents in one or more downgradient wells during the May and October 2021 monitoring events. These potential SSIs were either not statistically significant (i.e. verification resampling did not confirm the exceedance) or were evaluated and determined to be a result of natural variability as documented in an alternative source demonstration (ASD) for the May 2021 event and not attributable to the RRLF CCR unit. DTE Electric is in the process of performing an ASD to further evaluate a total dissolved solids (TDS) SSI at MW-16-06 for the October 2021 monitoring event. Therefore, detection monitoring will be continued at the RRLF CCR unit in accordance with §257.94 of the CCR Rule pending completion of a successful ASD. With the presence of the vertically and horizontally extensive clay-rich confining till beneath the RRLF CCR unit, there is no reasonable probability for the uppermost aquifer to have been affected by CCR from operations.

iii

1.0 Introduction

1.1 **Program Summary**

On April 17, 2015, the United States Environmental Protection Agency (USEPA) published the final rule for the regulation and management of Coal Combustion Residuals (CCR) under the Resource Conservation and Recovery Act (RCRA) (the CCR Rule), as amended. The CCR Rule, which became effective on October 19, 2015 (with amendments in 2018 and 2020), applies to the DTE Electric Company (DTE Electric) Range Road Coal Combustion Residual Landfill (RRLF) CCR unit. Pursuant to the CCR Rule, no later than January 31, 2018, and annually thereafter, the owner or operator of a CCR unit must prepare an annual groundwater monitoring and corrective action report for the CCR unit documenting the status of groundwater monitoring and corrective action for the preceding year in accordance with §257.90(e). On behalf of DTE Electric, TRC Engineers Michigan, Inc., the engineering entity of TRC, has prepared this Annual Groundwater Monitoring Report for calendar year 2021 activities at the RRLF CCR unit (2021 Annual Report).

This 2021 Annual Report presents the monitoring results and the statistical evaluation of the detection monitoring parameters (Appendix III to Part 257 of the CCR Rule) for the May and October 2021 semiannual groundwater monitoring events for the RRLF CCR unit in addition to the ASD for the first semiannual 2021 detection monitoring event (Appendix A). Detection monitoring for these events continued to be performed in accordance with the *CCR Groundwater Monitoring and Quality Assurance Project Plan – DTE Electric Company Range Road Landfill* (QAPP) (TRC, July 2016; revised August 2017) and statistically evaluated per the *Groundwater Statistical Evaluation Plan – DTE Electric Company Range Road Coal Combustion Residual Landfill* (Stats Plan) (TRC, October 2017). As part of the statistical evaluation, the data collected during detection monitoring events are evaluated to identify SSIs of detection monitoring parameters compared to background levels.

1.2 Site Overview

The RRLF is located in Section 12, Township 4 North, Range 16 East, 3600 Range Road, China Township in St. Clair County, Michigan. The site occupies approximately 514 acres and is one-half mile west of the St. Clair River and one mile north of the Belle River Power Plant. Prior to Detroit Edison's operations commencing in the 1950s, the RRLF property was used as farmland. The property has been used continuously as a coal ash landfill since Detroit Edison Company (now DTE Electric) began coal ash landfilling operations at the RRLF in the 1950s and is constructed over a natural confining, low permeability clay-rich soil base that serves as an underlying soil barrier. The RRLF property consists of approximately 514 acres of which approximately 402 acres are designated for landfill development. CCR currently occupies approximately 200 acres of the RRLF.

The RRLF is a licensed Coal Ash Landfill in accordance with Michigan's regulations, and is owned and operated by DTE Electric. The disposal facility currently accepts coal ash from DTE Electric's St. Clair and Belle River power plants, from the now inactive former DTE Electric Harbor Beach power plant and has historically accepted coal ash from the former DTE Electric Marysville power plant. The RRLF is operated under the current operating license number 9395

in accordance with Michigan Part 115 of the Natural Resources and Environmental Protection Act (NREPA), PA 451 of 1994, as amended.

1.3 Geology/Hydrogeology

The RRLF CCR unit is located approximately one-half mile west of the St. Clair River. In general, the RRLF is underlain by 86 to as much as 188 feet of laterally extensive low hydraulic conductivity silty clay-rich deposits. On the eastern portion and northwest corner of RRLF some thin partially saturated silty sand near-surface deposits are present. These deposits are not laterally contiguous, are not in communication with the deeper uppermost aquifer, do not yield a useable quantity of groundwater, and thus are not considered an aquifer per the CCR Rule. On a significant portion of the RRLF, there is a bedrock valley that trends from the northeast corner to the south-central area of the site. The valley is incised in the Bedford and/or Antrim Shale bedrock and filled with unconsolidated glacial deposits consisting of clay, silt, sand and/or gravel. Based on historical oil well logs from the RRLF area, the bedrock valley extends to depths of up to 303 feet below ground surface (ft bgs). Along the western portion of the RRLF, clay-rich till is present continuously to the top of the underlying Bedford or Antrim Shale bedrock in the area of SB-16-01 and SB-16-02 (Figure 1), creating a no flow boundary.

Groundwater within the uppermost aquifer sand/gravel is confined and protected from the CCR unit by the overlying clay-rich aquitard. The top of the sand/gravel uppermost aquifer encountered at each of the CCR monitoring wells and soil borings is at significantly different elevations across the RRLF that, where present, is first encountered at depths ranging from 86 to 196 ft bgs, immediately beneath the overlying clay-rich aquitard. The variability in boring/well depths is a consequence of the heterogeneity of the glacial deposits and is driven by the limited continuity of the coarse-grained sand and gravel outwash within the overlying/encapsulating fine-grained, silty clay till that confines the uppermost aquifer. In addition, there is an apparent lack of interconnection and/or significant vertical variation between the various uppermost aquifer sand and/or gravel units encountered across the RRLF CCR unit.

Given the horizontally expansive clay with substantial vertical thickness, the heterogeneity of the glacial deposits (with the top of the uppermost aquifer elevation across the RRLF CCR unit varying up to 100 feet vertically), the no-flow boundary to the west, and the lack of hydraulic interconnectedness of the uppermost aquifers encountered at the site in some areas, it is not appropriate to infer horizontal flow direction or gradients across the site. If CCR affected groundwater were able to penetrate the clay-rich underlying confining till, it would travel radially away from the RRLF. However, with the presence of the vertically and horizontally extensive clay-rich confining till beneath the RRLF CCR unit, there is no reasonable probability for the uppermost aquifer to have been affected by CCR from operations that began in the 1950s.

2.0 Groundwater Monitoring

2.1 Monitoring Well Network

A groundwater monitoring system has been established for the RRLF CCR unit as detailed in the *Groundwater Monitoring System Summary Report – DTE Electric Company Range Road Coal Combustion Residual Landfill* (GWMS Report) (TRC, October 2017). The detection monitoring well network for the RRLF CCR unit currently consists of seven monitoring wells that are screened in the uppermost aquifer. Monitoring wells MW-16-01 through MW-16-07 are located around the north, east and south perimeter of the RRLF and provide data on both background and downgradient groundwater quality that has not been affected by the CCR unit (total of seven background/downgradient monitoring wells). The monitoring well locations are shown on Figure 2.

2.2 Semiannual Groundwater Monitoring

The semiannual monitoring parameters for the detection groundwater monitoring program were selected per the CCR Rule's Appendix III to Part 257 – Constituents for Detection Monitoring. The Appendix III indicator parameters consist of boron, calcium, chloride, fluoride, pH (field reading), sulfate, and total dissolved solids (TDS) and were analyzed in accordance with the sampling and analysis plan included within the QAPP. In addition to pH, the collected field parameters included dissolved oxygen, oxidation reduction potential, specific conductivity, temperature, and turbidity.

2.2.1 Data Summary

The first semiannual groundwater detection monitoring event for 2021 was performed May 17 through 19, 2021 by TRC personnel and samples were analyzed by Eurofins TestAmerica (Eurofins) in accordance with the QAPP. Static water elevation data were collected at all seven monitoring well locations. Groundwater samples were collected from the seven detection monitoring wells for the Appendix III indicator parameters and field parameters. A summary of the groundwater data collected during the May 2021 event is provided on Table 1 (static groundwater elevation data), Table 2 (field data), and Table 3 (analytical results).

The second semiannual groundwater detection monitoring event for 2021 was performed October 18 and 19, 2021 by TRC personnel and samples were analyzed by Eurofins in accordance with the QAPP. Static water elevation data were collected at all seven monitoring well locations. Groundwater samples were collected from the seven detection monitoring wells for the Appendix III indicator parameters and field parameters. A summary of the groundwater data collected during the October 2021 event is provided on Table 1 (static groundwater elevation data), Table 2 (field data), and Table 4 (analytical results). The laboratory analytical reports are included in Appendix B.

2.2.2 Data Quality Review

Data from each round were evaluated for completeness, overall quality and usability, methodspecified sample holding times, precision and accuracy, and potential sample contamination. The data were found to be complete and usable for the purposes of the CCR monitoring

program. Data quality reviews are summarized in Appendix C.

2.2.3 Groundwater Flow Rate and Direction

As presented in the GWMS Report, and mentioned above, given the horizontally expansive clay with substantial vertical thickness, the heterogeneity of the glacial deposits (with the top of the uppermost aquifer elevation across the RRLF CCR unit varying up to 100 feet vertically), the no-flow boundary to the west, and the lack of hydraulic interconnectedness of the uppermost aquifers encountered at the site in some areas, it is not appropriate to infer horizontal flow direction or gradients across the site. Groundwater elevations measured across the Site during the May 2021 sampling event are provided on Table 1 and are summarized in plan view on Figure 3. Groundwater elevations measured across the Site during the October 2021 sampling event are summarized in plan view on Figure 4.

Groundwater elevation data collected during the most recent sampling event show that groundwater conditions within the uppermost aquifer are consistent with previous monitoring events and continue to demonstrate that the groundwater monitoring wells are appropriately positioned to detect the presence of Appendix III parameters that could potentially migrate from the RRLF CCR unit.

3.0 Statistical Evaluation

3.1 Establishing Background Limits

As discussed in the Stats Plan, intrawell statistical methods for RRLF were selected based on the geology and hydrogeology at the Site (primarily the presence of clay/hydraulic barrier, the variability in the presence of the uppermost aquifer across the site, and the presence of a no flow boundary on the west side of the aquifer), in addition to other supporting lines of evidence that the aquifer is unaffected by the CCR unit (such as the consistency in concentrations of water quality data). An intrawell statistical approach requires that each downgradient well doubles as a background and compliance well, where data from each individual well during a detection monitoring event is compared to a statistical limit developed using the background dataset from that same well.

Per the Stats Plan, background limits were established for the Appendix III indicator parameters following the collection of at least eight background monitoring events using data collected from each of the seven established detection monitoring wells (MW-16-01 through MW-16-07). The initial statistical evaluation of the background data is presented in the 2017 Annual Report. The Appendix III background limits for each monitoring well will be used throughout the detection monitoring period to determine whether groundwater has been impacted from the RRLF CCR unit by comparing concentrations in the detection monitoring wells to their respective background limits for each Appendix III indicator parameter.

Prediction limits are periodically updated to reflect the additional data and additional temporal variability observed subsequent to the initial statistical limit calculation in 2018. The Appendix III prediction limits at the RRLF were updated in December 2021 to incorporate additional data collected since 2017 as presented in the December 15, 2021 Technical Memorandum, *Uppermost Useable Aquifer Prediction Limit Update – DTE Electric Company, Range Road Coal Combustion Residual Landfill* included as Appendix D. The updated prediction limits were used to statistically evaluate Appendix III indicator parameters for the second semiannual 2021 detection monitoring event.

3.2 Data Comparison to Background Limits – First 2021 Semiannual Event (May 2021)

For each semiannual monitoring event, the concentrations of the indicator parameters in each of the detection monitoring wells (MW-16-01 through MW-16-07) were compared to their respective statistical background limits.

The comparisons for the May 2021 monitoring event are presented on Table 3. The statistical evaluation of the May 2021 Appendix III indicator parameters showed potential initial SSIs over background for:

- TDS at MW-16-04; and
- Sulfate at MW-16-05.

The calcium and sulfate exceedances at MW-16-06, and the chloride exceedance at MW-16-07 during the First 2021 Semiannual Event have been previously demonstrated to be from natural variability and are not from the CCR unit as presented in various ASDs that were included in the 2018 Annual Groundwater Monitoring Report (2018 GWMR)(TRC, January 2019), and 2019 Annual Groundwater Monitoring Report (2019 GWMR)(TRC, January 2020) that still apply.

3.3 Verification Resampling for the First 2021 Semiannual Event

Verification resampling is performed per the Stats Plan and the USEPA's Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance (Unified Guidance, USEPA, 2009) to achieve performance standards as specified by §257.93(g) in the CCR Rule. Per the Stats Plan, if there is an exceedance of a prediction limit for one or more of the parameters, the well(s) of concern will be resampled within 30 days of the completion of the initial statistical analysis. Only constituents that initially exceed their statistical limit (i.e., have no previously recorded SSIs) will be analyzed for verification purposes.

Verification resampling for the May 2021 event was conducted from June 25th through 28th, 2021 by TRC personnel. A groundwater sample was collected for TDS at MW-16-04 and sulfate at MW-16-05 in accordance with the QAPP. A summary of the analytical results collected during the June 2021 resampling event is provided on Table 3. The verification results for sulfate at MW-16-05 were below the prediction limit, therefore the SSI for sulfate was not confirmed and no SSI will be recorded for sulfate at MW-16-05 during the first semiannual 2021 sampling event. The associated data quality review is included in Appendix C.

The verification result for TDS at MW-16-04 confirmed the SSI from the May 2021 sampling event. TRC reviewed the data and determined that TDS is a result of natural variability in groundwater quality and not attributable to the RRLF CCR unit as presented in the *Alternate Source Demonstration: Second Quarter 2021 Semiannual Detection Monitoring Sampling Event Range Road Landfill Coal Combustion Residual Unit 3600 Range Road, China Township, Michigan* dated August 16, 2021 (August 2021 ASD) (Appendix A). As such, detection monitoring was continued in accordance with §257.94 of the CCR Rule.

3.4 Data Comparison to Background Limits – Second 2021 Semiannual Event (October 2021)

The data comparisons for the October 2021 groundwater monitoring event are presented on Table 4. The statistical evaluation of the October 2021 Appendix III indicator parameters showed a potential initial SSI over background for:

TDS at MW-16-06.

The calcium and sulfate concentrations at MW-16-06, during the Second 2021 Semiannual Event have been previously demonstrated to be from natural variability and are not from the CCR unit as presented in the ASDs that still apply that were included in the 2018 GWMR and 2019 GWMR.

3.5 Verification Resampling for the Second 2021 Semiannual Event

Verification resampling is performed per the Stats Plan and the USEPA's Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance (Unified Guidance, USEPA, 2009) to achieve performance standards as specified by §257.93(g) in the CCR Rule. Per the Stats Plan, if there is an exceedance of a prediction limit for one or more of the parameters, the well(s) of concern will be resampled within 30 days of the completion of the initial statistical analysis. Only constituents that initially exceed their statistical limit (i.e., have no previously recorded SSIs) will be analyzed for verification purposes.

Verification resampling for the October 2021 event was conducted on December 6th, 2021 by TRC personnel. A groundwater sample was collected for TDS from MW-16-06 in accordance with the QAPP. A summary of the analytical results collected during the December 2021 resampling event is provided on Table 4. The associated data quality review is included in Appendix C. The verification result for TDS at MW-16-06 confirmed the SSI from the October 2021 sampling event. Per §257.94(e), DTE Electric is in the process of performing an ASD to further evaluate the TDS SSI at MW-16-06.

4.0 Conclusions and Recommendations

A potential SSI over the background limit for TDS at MW-16-04 was noted during the May 2021 monitoring event. The observed concentration of TDS at MW-16-04 was demonstrated to be a result of natural variability in groundwater quality and not attributable to the RRLF CCR unit, as documented in the ASD (Appendix A). As discussed above, and in the GWMS Report, with the presence of the vertically and horizontally extensive clay-rich confining till beneath the RRLF CCR unit, there is no reasonable probability for the uppermost aquifer to have been affected by CCR from operations. For the October 2021 monitoring event, an SSI for TDS was observed at MW-16-06, as verified by resampling, and is being further evaluated through the ASD process.

According to §257.94(e), in the event that the facility determines, pursuant to §257.93(h), that there is a SSI over background levels for one or more of the Appendix III constituents, the facility will, within 90 days of detecting an SSI, establish an assessment monitoring program <or>

- A source other than the CCR unit caused the SSI, or
- The SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

The owner or operator must complete a written demonstration (i.e., Alternative Source Demonstration, ASD), of the above within 90 days of confirming the SSI. Based on the outcome of the ASD the following steps will be taken:

 If a successful ASD is completed, a certification from a qualified professional engineer is required, and the CCR unit may continue with detection monitoring.

If a successful ASD is not completed within the 90-day period, the owner or operator of the CCR unit must initiate an assessment monitoring program as required under §257.95. The facility must also include the ASD in the annual groundwater monitoring and corrective action report required by §257.90(e), in addition to the certification by a qualified professional engineer.

In response to the TDS SSI over the background limit noted during the October 2021 event, DTE plans to prepare an ASD to evaluate whether a source other than the RRLF CCR unit caused the SSI.

No corrective actions were performed in 2021. The next semiannual monitoring event at the RRLF CCR unit is scheduled for the second calendar quarter of 2022.

5.0 Groundwater Monitoring Report Certification

The U.S. EPA's Disposal of Coal Combustion Residuals from Electric Utilities Final Rule Title 40 CFR Part 257 §257.90(e) requires that the owner or operator of an existing CCR unit prepare an annual groundwater monitoring and corrective action report.

Annual Groundwater Monitoring Report Certification Range Road Landfill China Township, Michigan

CERTIFICATION

I hereby certify that the annual groundwater and corrective action report presented within this document for the RRLF CCR unit has been prepared to meet the requirements of Title 40 CFR §257.90(e) of the Federal CCR Rule. This document is accurate and has been prepared in accordance with good engineering practices, including the consideration of applicable industry standards, and with the requirements of Title 40 CFR §257.90(e).

Name:	Expiration Date:	NIC WICH
David B. McKenzie, P.E.	December 17, 2023	DAVID B S DAVID B MCKENZIE K ENGINEER
Company:	Date:	* ENGINEER NO. NO. 11CTH 6201042332
TRC Engineers Michigan, Inc.	January 31, 2022	AND ASTAFILS SIONADD

6.0 References

- TRC. July 2016; Revised March and August 2017. CCR Groundwater Monitoring and Quality Assurance Project Plan – DTE Electric Company Range Road Landfill, 3600 Range Road, China Township, Michigan. Prepared for DTE Electric Company.
- TRC. October 2017. Groundwater Monitoring System Summary Report DTE Electric Company Range Road Coal Combustion Residual Landfill, 3600 Range Road, China Township, Michigan. Prepared for DTE Electric Company.
- TRC. October 2017. Groundwater Statistical Evaluation Plan DTE Electric Company Range Road Coal Combustion Residual Landfill, 3600 Range Road, China Township, Michigan. Prepared for DTE Electric Company.
- TRC. April 12, 2018. Alternate Source Demonstration: 2017 Initial Detection Monitoring Sampling Event Range Road Coal Combustion Residual Landfill, China Township, Michigan. Prepared for DTE Electric Company.
- TRC. January 2018. Annual Groundwater Monitoring Report DTE Electric Company Range Road Coal Combustion Residual Landfill, 3600 Range Road, China Township, Michigan. Prepared for DTE Electric Company.
- TRC. April 12, 2018. Alternate Source Demonstration: 2017 Initial Detection Monitoring Sampling Event Range Road Coal Combustion Residual Landfill, China Township, Michigan. Prepared for DTE Electric Company.
- TRC. August 1, 2018. Alternate Source Demonstration: First 2018 Semiannual Detection Monitoring Sampling Event for the Range Road Coal Combustion Residual Landfill, China Township, Michigan. Prepared for DTE Electric Company.
- TRC. January 2019. 2018 Annual Groundwater Monitoring Report DTE Electric Company Range Road Coal Combustion Residual Landfill, 3600 Range Road, China Township, Michigan. Prepared for DTE Electric Company.
- TRC. August 8, 2019. Alternate Source Demonstration: First 2019 Semiannual Detection Monitoring Sampling Event for the Range Road Coal Combustion Residual Landfill, China Township, Michigan. Prepared for DTE Electric Company.
- TRC. January 2020. 2019 Annual Groundwater Monitoring Report DTE Electric Company Range Road Coal Combustion Residual Landfill, 3600 Range Road, China Township, Michigan. Prepared for DTE Electric Company.
- TRC. August 16, 2021. Alternate Source Demonstration: Second Quarter 2021 Semiannual Detection Monitoring Sampling Event Range Road Landfill Coal Combustion Residual Unit 3600 Range Road, China Township, Michigan.
- USEPA. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA facilities, Unified Guidance. Office of Conservation and Recovery. EPA 530/R-09-007.

- USEPA. April 2015. 40 CFR Parts 257 and 261. Hazardous and Solid Waste Management System: Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule. 80 Federal Register 74 (April 17, 2015), pp. 21301-21501 (80 FR 21301).
- USEPA. July 2018. 40 CFR Part 257. Hazardous and Solid Waste Management System: Disposal of Coal Combustion Residuals from Electric Utilities; Amendments to the National Minimum Criteria (Phase One, Part One); Final Rule. 83 Federal Register 146 (July 30, 2018), pp. 36435-36456 (83 FR 36435).
- USEPA. April 2018. Barnes Johnson (Office of Resource Conservation and Recovery) to James Roewer (c/o Edison Electric Institute) and Douglas Green, Margaret Fawal (Venable LLP). Re: Coal Combustion Residuals Rule Groundwater Monitoring Requirements. April 30, 2018. United States Environmental Protection Agency, Washington, D.C. 20460. Office of Solid Waste and Emergency Response, now the Office of Land and Emergency Management.

Tables

Table 1 Summary of Groundwater Elevation Data – May and October 2021 Range Road Landfill – RCRA CCR Monitoring Program China Township, Michigan

Well ID	MW-	16-01	MW-	16-02	MW-	16-03	MW-	16-04	MW-	16-05	MW-	16-06	MW-	16-07
Date Installed	1/13/	2016	1/27/	2016	2/1/	2016	5/24/	/2016	5/13/	2016	5/10/	2016	5/13/	/2016
TOC Elevation	595	5.35	598	3.44	597	7.69	596	6.87	601	.97	600).68	589	9.34
Geologic Unit of Screened interval	Sand v	vith Silt	Silty Sand	with Gravel	Silty Grave	I with Sand	Silty	Sand	Gravel w	vith Sand	Sa	ind	Sa	and
Screened Interval Elevation	390.7 to	o 385.7	393.8 t	o 388.8	432.1 t	o 427.1	414.1 t	o 409.1	476.6 t	o 471.6	508.0 t	o 503.0	494.4 t	o 489.4
Unit	ft BTOC	ft												
Measurement Date	Depth to Water	GW Elevation												
05/17/2021	18.33	577.02	20.71	577.73	19.94	577.75	19.22	577.65	27.43	574.54	23.62	577.06	16.97	572.37
10/18/2021	18.17	577.18	20.58	577.86	19.85	577.84	19.10	577.77	27.42	574.55	23.52	577.16	15.75	573.59

Notes:

Elevations are reported in feet relative to the North American Vertical Datum of 1988.

ft BTOC - feet below top of casing.

Table 2Summary of Field Data – May to December 2021Range Road Landfill – RCRA CCR Monitoring Program
China Township, Michigan

Sample Location	Sample Date	Dissolved Oxygen (mg/L)	Oxidation Reduction Potential (mV)	pH (SU)	Specific Conductivity (umhos/cm)	Temperature (deg C)	Turbidity (NTU)
	5/17/2021	1.56	18.9	7.2	1,528	11.30	3.34
MW-16-01	10/18/2021	1.04	-168.0	7.6	1,702	11.40	1.63
	5/17/2021	1.58	-150.0	8.2	1,459	11.00	4.21
MW-16-02	10/18/2021	0.96	-231.2	8.2	1,664	12.20	2.27
	5/17/2021	1.55	-123.6	8.0	1,287	11.30	2.86
MW-16-03	10/18/2021	0.95	-189.5	8.0	1,413	12.30	2.81
	5/19/2021	1.71	-72.5	7.5	5,879	11.30	7.42
MW-16-04	6/25/2021	2.39	-162.4	7.9	9,320	12.50	12.4
	10/19/2021	1.08	-197.8	7.8	6,810	11.50	19.7
	5/18/2021	1.56	-92.4	8.3	1,463	11.30	1.63
MW-16-05	6/28/2021	2.04	-173.4	8.0	2,072	13.60	7.25
	10/18/2021	0.95	-204.6	8.2	1,469	11.70	1.06
	5/17/2021	1.61	-63.2	7.6	1,271	11.40	4.38
MW-16-06	10/18/2021	1.04	-170.7	7.6	1,499	11.70	1.38
	12/6/2021	1.03	-128.1	7.8	1,608	10.40	1.20
100/ 40.07	5/18/2021	1.53	-123.5	7.9	947	11.30	42.6
MW-16-07	10/19/2021	1.06	-166.0	7.7	960	10.90	66.7

Notes:

mg/L -Milligrams per Liter.

mV - Millivolts.

SU - Standard Units.

umhos/cm - Micromhos per centimeter.

°C - Degrees Celcius.

NTU - Nephelmetric Turbidity Unit.

Table 3 Comparison of Appendix III Parameter Results to Background Limits – May and June 2021 Range Road Landfill – RCRA CCR Monitoring Program China Township, Michigan

Sa	mple Location:	MW-	16-01	MW-	16-02	MW-	16-03		MW-16-04			MW-16-05		MW-1	16-06	MW-	16-07
	Sample Date:	5/17/2021	Ы	5/17/2021	PL	5/17/2021	ы	5/19/2021	6/25/2021	PL	5/18/2021	6/28/2021	PL	5/17/2021	PL	5/18/2021	
Constituent	Unit	Data	FL	Data	FL	Data	FL	D	ata	FL	Da	ata	FL	Data	FL	Data	FL
Appendix III																	
Boron	ug/L	510	560	1,000	1,100	1,100	1,200	980		1,100	1,200		1,400	970	1,200	850	950
Calcium	ug/L	79,000	89,000	22,000	24,000	20,000	21,000	66,000		67,000	19,000		19,000	35,000 ⁽¹⁾	31,000	45,000	66,000
Chloride	mg/L	700	770	650	720	520	550	3,200		3,600	560		620	500	590	350 ⁽²⁾	330
Fluoride	mg/L	0.84	0.95	2.1	2.1	2.2	2.3	1.5		1.6	1.9		1.9	1.5	1.6	1.3	1.3
pH, Field	SU	7.2	7.1 - 8.4	8.2	8.2 - 9.0	8.0	8.0 - 8.8	7.5	7.9	7.5 - 8.5	8.3	8.0	8.0 - 8.9	7.6	7.6 - 8.4	7.9	7.2 - 8.3
Sulfate	mg/L	31	43	< 10	10	< 10	10	< 5.0		50	15	7.5	10	60 ⁽³⁾	31	3.4	120
Total Dissolved Solid	s mg/L	1,200	1,300	1,100	1,200	970	1,200	5,600	5,400 ⁽⁴⁾	5,300	970		1,200	1,000	1,100	710	770

Notes:

ug/L - micrograms per liter.

mg/L - milligrams per liter.

SU - standard units; pH is a field parameter.

-- = not analyzed

All metals were analyzed as total unless otherwise specified.

Bold font indicates an exceedance of the Prediction Limit (PL).

RESULT Shading and bold font indicates a confirmed exceedance of the Prediction Limit (PL).

(1) - Concentration addressed through First 2019 Semiannual alternative source demonstration.

(2) - Concentration addressed through initial alternative source demonstration.

(3) - Concentration addressed through First 2018 semiannual alternative source demonstration.

(4) - Concentration addressed through Second Quarter 2021 alternative source demonstration.

Table 4 Comparison of Appendix III Parameter Results to Background Limits – October and December 2021 Range Road Landfill – RCRA CCR Monitoring Program China Township, Michigan

San	ple Location:	MW-1	16-01	MW-1	6-02	MW-	16-03	MW-1	6-04	MW-1	6-05		MW-16-06		MW-	16-07
	Sample Date:	10/18/2021	PL ⁽¹⁾	10/18/2021	12/6/2021	DI ⁽¹⁾	10/18/2021	DI ⁽¹⁾								
Constituent	Unit	Data	PL	Data	PL	Data	PLY	Data	PL	Data	PL	Da	ata	PLY	Data	PL ⁽¹⁾
Appendix III																
Boron	ug/L	510	620	920	1,200	1,100	1,300	880	1,200	1,200	1,400	900		1,200	880	980
Calcium	ug/L	77,000	87,000	21,000	24,000	19,000	28,000	63,000	68,000	17,000	19,000	46,000 ⁽²⁾		34,000	45,000	59,000
Chloride	mg/L	550	770	660	720	520	580	3,200	3,600	560	630	490		580	350	380
Fluoride	mg/L	0.85	0.90	2.0	2.1	2.2	2.2	1.5	1.69	2.0	2.0	1.4		1.5	1.3	1.3
pH, Field	SU	7.6	7.1 - 8.2	8.2	8.2 - 9.0	8.0	8.0 - 8.8	7.8	7.6 - 8.6	8.2	8.0 - 8.9	7.6	7.8	7.6 - 8.3	7.7	7.3 - 8.4
Sulfate	mg/L	41	45	1.7	10	< 5.0	10	< 5.0	50	3.0	10	150 ⁽³⁾		54	3.8	74
Total Dissolved Solids	mg/L	1,200	1,300	1,100	1,300	1,000	1,100	5,100	5,300	1,100	1,200	1,200	1,300	1,100	670	760

Notes:

ug/L - micrograms per liter.

mg/L - milligrams per liter.

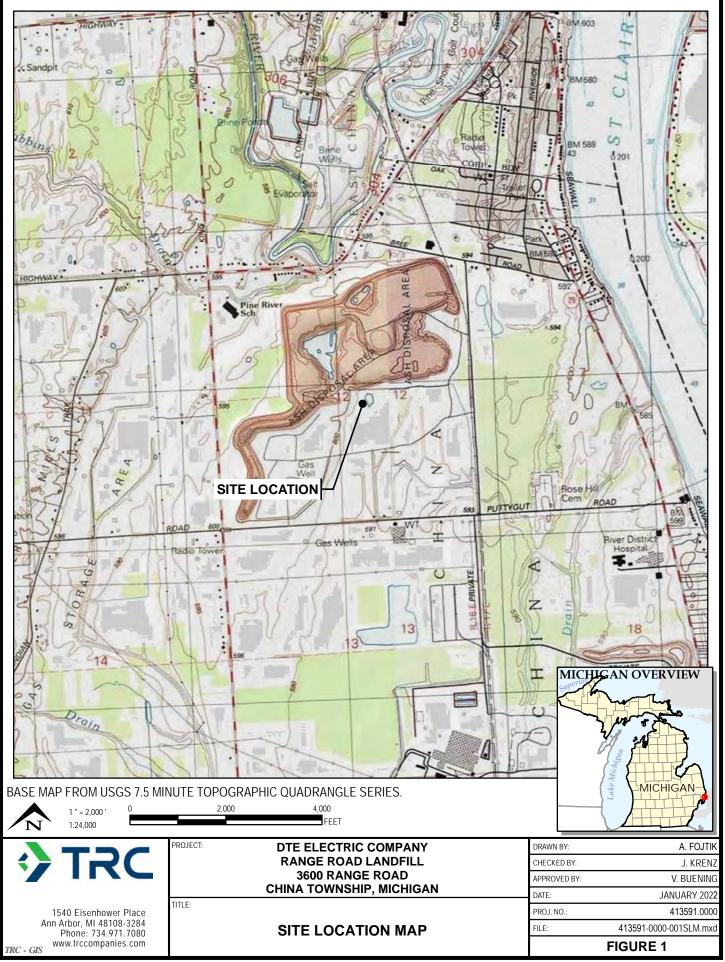
SU - standard units; pH is a field parameter.

-- = not analyzed

All metals were analyzed as total unless otherwise specified.

Bold font indicates an exceedance of the Prediction Limit (PL).

RESULT Shading and bold font indicates a confirmed exceedance of the Prediction Limit (PL).


(1) - Prediction limits updated December 15, 2021.

(2) - Concentration addressed through First 2019 Semiannual alternative source demonstration.

(3) - Concentration addressed through First 2018 Semiannual alternative source demonstration.

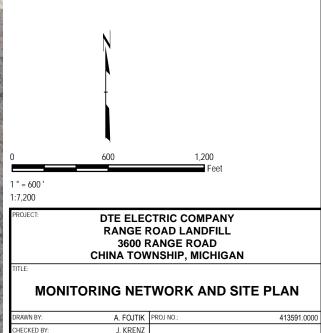
Figures

S:\1-PROJECTS\DTE_Energy\320511_RiverRouge\370029-0000-001SLM.mxd -- Saved By: SMAJOR on 1/27/2021, 10:23:11 AM

Coordinate System: NAD 1983 StatePlane Michigan South FIPS 2113 Feet Intl (Fool)

ot Date: 1/27/2021, 10:34:49 AM by SMAJOR -- LAYOUT: ANSI B(11"x17 eth: E-INTELCCB Strach2017 2650643270029.0000.002 mvd

Ð

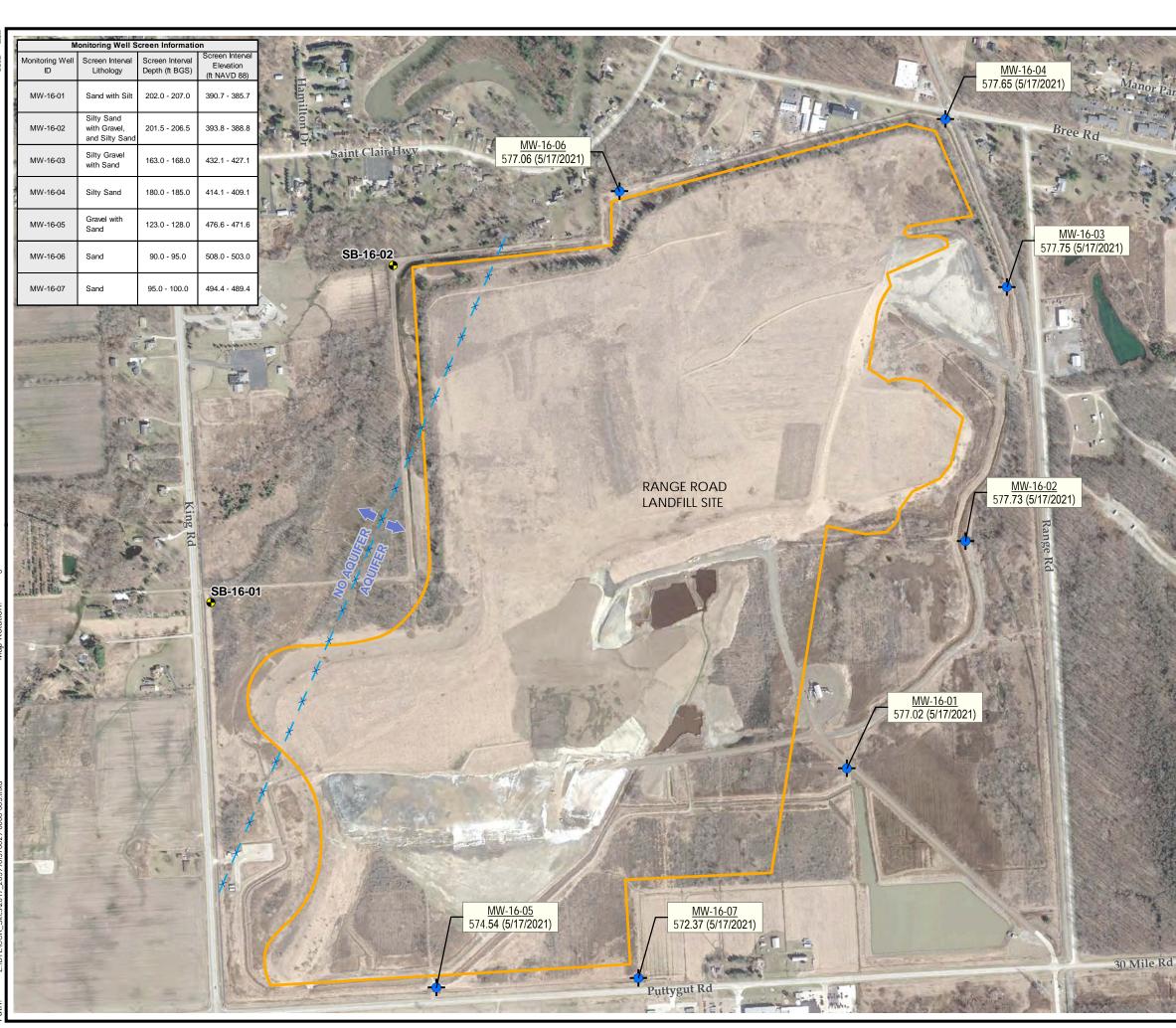


SOIL BORING

APPROXIMATE ANTICIPATED MAXIMUM LIMIT OF ASH FILL

<u>NOTES</u>

- 1. BASE MAP IMAGERY FROM GOOGLE EARTH PRO,2019.
- 2. WELL LOCATIONS SURVEYED IN MARCH AND MAY 2016 BY BMJ ENGINEERS & SURVEYORS, INC.
- 3. OIL AND GAS WELL LOCATIONS FROM MICHIGAN DEPARTMENT OF ENVIRONMENTAL QUALITY, GEOWEBFACE.



DRAWN BY:	A. FOJTIK	PROJ NO.:	413591.000
CHECKED BY:	J. KRENZ		
APPROVED BY:	V. BUENING	FIGUR	E 2
DATE:	JANUARY 2022		

1540 Eisenhower Place Ann Arbor, MI 48108-3284 Phone: 734.971.7080 www.trccompanies.com

413591-0000-002.mxd

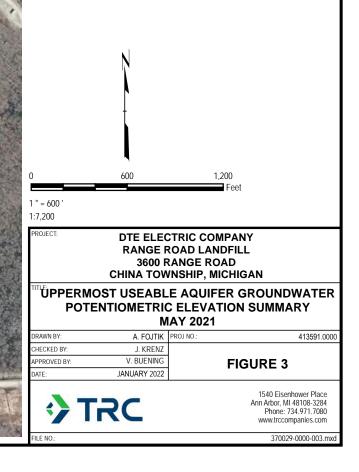
Coordinate System: NAD 1983 StatePlane Michigan South FIPS 2113 Feet Intl (F

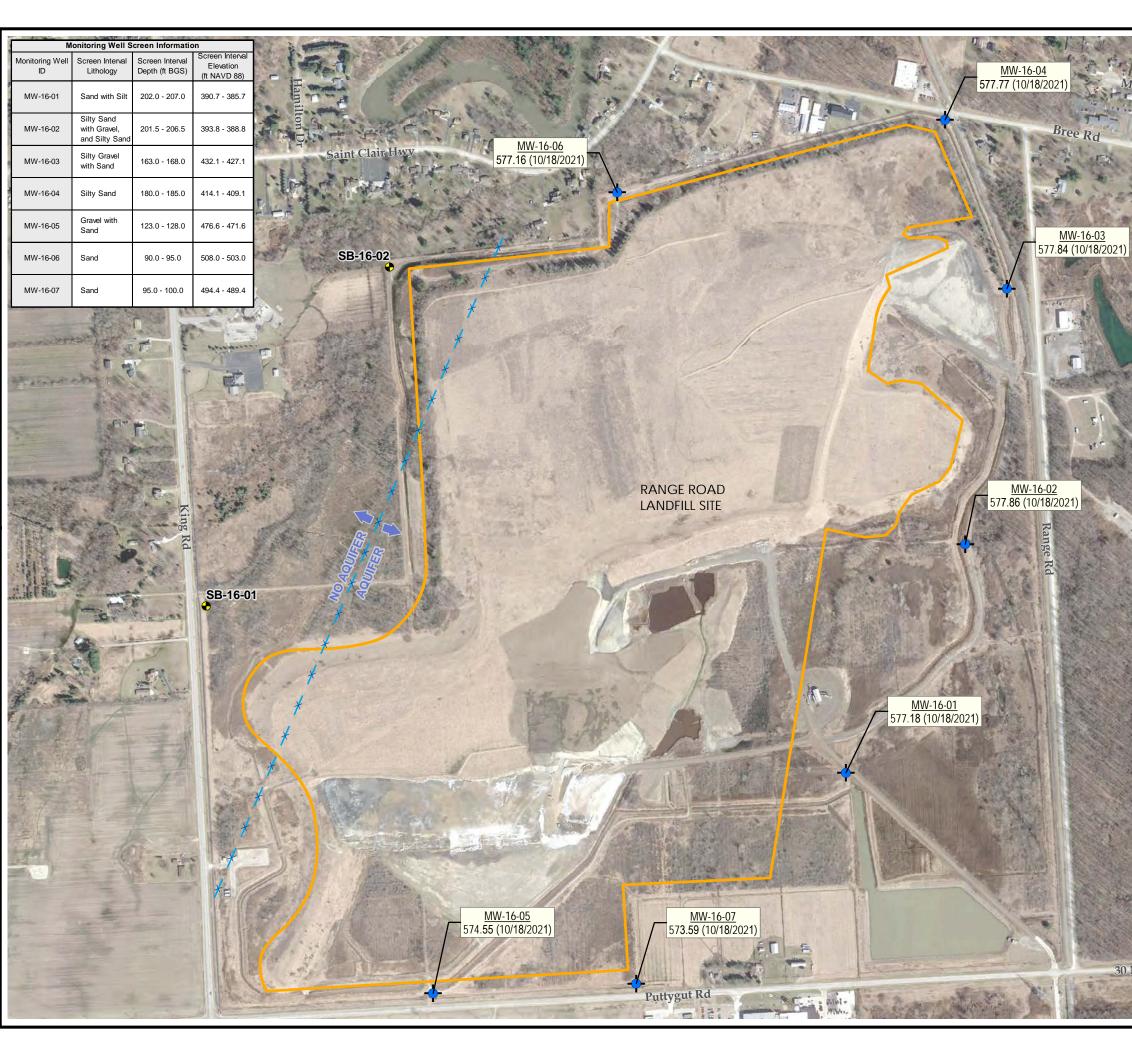
ot Date: 1/19/2021, 09:44:15 AM by SMAJOR -- LAY OUT: ANSI B(11"×17 e+\nTELCCE 8#e+\2017 345098/32/0792.00/00.002 mv4

Jar

-

APPROXIMATE ANTICIPATED MAXIMUM LIMIT OF ASH FILL


APPROXIMATE AQUIFER BOUNDARY


MW ID GROUNDWATER ELEVATION (DATE)

<u>FT BGS</u> FEET BELOW GROUND SURFACE <u>FT NAVD 88</u> FEET RELATIVE TO THE NORTH AMERICAN VERTICAL DATUM OF 1988

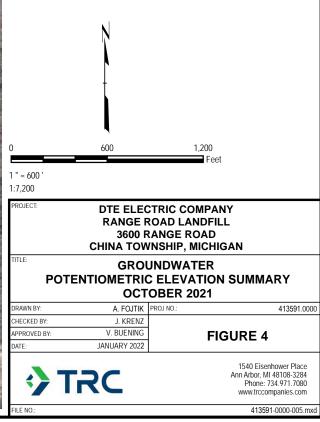
<u>NOTES</u>

- 1. BASE MAP IMAGERY FROM GOOGLE EARTH PRO, 2019.
- 2. WELL LOCATIONS SURVEYED IN MARCH AND MAY 2016 BY BMJ ENGINEERS & SURVEYORS, INC .

LEGEND

- SOIL BORING

APPROXIMATE ANTICIPATED MAXIMUM LIMIT OF ASH FILL


* APPROXIMATE AQUIFER BOUNDARY

MW ID GROUNDWATER ELEVATION (DATE)

FT BGS FEET BELOW GROUND SURFACE FT NAVD 88 FEET RELATIVE TO THE NORTH AMERICAN VERTICAL DATUM OF 1988

<u>NOTES</u>

- 1. BASE MAP IMAGERY FROM GOOGLE EARTH PRO, 2019.
- 2. WELL LOCATIONS SURVEYED IN MARCH AND MAY 2016 BY BMJ ENGINEERS & SURVEYORS, INC .

Appendix A Alternate Source Demonstration: Second Quarter 2021 Semiannual Detection Monitoring Sampling Event

August 16, 2021

Mary R. Carnagie Solid Waste Geologist Materials Management Division Michigan Department of Environment, Great Lakes, and Energy (EGLE) 27700 Donald Court Warren, MI 48092-2793

Subject: Alternate Source Demonstration: Second Quarter 2021 Semiannual Detection Monitoring Sampling Event Range Road Landfill Coal Combustion Residual Unit 3600 Range Road, China Township, Michigan

Dear Ms. Carnagie:

TRC was retained by DTE Electric Company (DTE Electric) to conduct routine groundwater monitoring activities for the uppermost usable aquifer at the Range Road Landfill (RRLF) coal combustion residual (CCR) unit, located in St Clair County, Michigan. Routine groundwater monitoring at the RRLF CCR unit is conducted in accordance with the Michigan Department of Environment, Great Lakes, and Energy (EGLE) approved *Hydrogeologic Monitoring Plan for the DTE Electric Company Range Road Ash Disposal Facility, China Township, St. Clair County, Michigan* (2020 HMP) (TRC, November 2019; Revised May 2020) and the United States Environmental Protection Agency (USEPA) final rule for the regulation and management of CCR under the Resource Conservation and Recovery Act (RCRA) (the CCR Rule), as amended (USEPA, April 2015).

As discussed in the Second Quarter 2021 Hydrogeological Monitoring and Performance Monitoring Report (Second Quarter 2021 Report) (TRC, July 2021), the statistical evaluation of the May 2021 detection monitoring indicator parameters showed potential statistically significant increases (SSIs) over the prediction limit (PL) for sulfate at MW-16-05 (15 milligrams per liter (mg/L) with a PL of 10 mg/L) and total dissolved solids (TDS) at MW-16-04 (5,600 mg/L with a PL of 5,300 mg/L). Verification resampling for the May 2021 event was conducted on June 25 and 28, 2021 by TRC personnel. The verification result for sulfate at MW-16-05 (7.5 mg/L) was below the PL (10 mg/L), consequently the initial potential SSI for sulfate at MW-16-05 is not confirmed. Therefore, in accordance with the *Uppermost Aquifer Groundwater Statistical Evaluation Plan* (Stats Plan) (TRC, October 2017, revised April 2020b) and the *USEPA's Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance* (Unified Guidance) (USEPA, 2009), the initial exceedance is not statistically significant, and no SSI will be recorded for sulfate at MW-16-05. The June 2021 verification result for TDS at MW-16-04 (5,400 mg/L) is slightly above the prediction limit (5,300 mg/L), confirming the initial potential SSI from the May 2021 sampling (Table 1).

In accordance with §257.94(e)(2) and the 2020 HMP, DTE Electric may demonstrate that a source other than the CCR unit caused the SSI or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. This Alternate Source Demonstration (ASD) has been prepared to address the potential SSI identified in the May 2021 detection monitoring event.

Ms. Mary Carnagie EGLE August 16, 2021 Page 2

Background

The RRLF is located in Section 12, Township 4 North, Range 16 East, 3600 Range Road, China Township in St. Clair County, Michigan. The site location is shown in Figure 1. The property has been used continuously as a coal ash landfill since Detroit Edison Company (now DTE Electric) began coal ash landfilling operations in the 1950s. The property consists of approximately 514 acres of which approximately 402 acres are designated for CCR landfill development, half of which is currently occupied with CCR.

The RRLF CCR unit is immediately underlain by 86 to 188 feet of laterally extensive, low hydraulic conductivity silty clay-rich deposits. A no flow boundary is formed across the western portion of the RRLF by clay-rich till which is present continuously to the top of bedrock in this area. Beneath the clay rich aquitard, a sand/gravel layer is encountered, which contains the uppermost aquifer present beneath the RRLF. This uppermost usable aquifer is encountered at different elevations beneath the RRLF between 86 and 196 feet below ground surface (ft bgs). As a result of site specific geologic and hydrogeologic conditions, downward migration of CCR leachate is not expected, and it is not appropriate to infer horizontal flow directions across the site. Please refer to the *Uppermost Usable Aquifer Groundwater Monitoring System Summary Report – DTE Electric Company Range Road Coal Combustion Residual Landfill, 3600 Range Road, China Township, Michigan* (October 2017, Revised April 2020a) (Uppermost Usable Aquifer Groundwater Monitoring System Summary Report Monitoring System Summary Report) (Appendix A of the 2020 HMP) for further details regarding site-specific hydrogeology.

The uppermost usable aquifer monitoring well network for the RRLF currently consists of seven monitoring wells that are screened in the uppermost usable aquifer and are all considered to be downgradient monitoring wells. The monitoring well locations are shown in Figure 2. The Uppermost Usable Aquifer Groundwater Monitoring System Summary Report (October 2017, Revised April 2020a) (Appendix A of the 2020 HMP) details the groundwater monitoring system.

Alternate Source Demonstration

As discussed above, verification resampling was performed as recommended per the Stats Plan and the Unified Guidance to achieve performance standards as specified by §257.93(g) in the CCR Rule and the 2020 HMP. Per the Stats Plan, if there is an exceedance of a prediction limit for one or more of the parameters, the well(s) of concern will be resampled within 30 days of the completion of the initial statistical analysis. Only constituents that initially exceeded their statistical limit (i.e., have no previously recorded SSIs) were analyzed for verification purposes. As such, verification resampling was conducted on June 25 and 28, 2021 by TRC personnel for monitoring wells MW-16-04 and MW-16-05. Groundwater samples were collected in accordance with the *CCR Groundwater Monitoring and Quality Assurance Project Plan – DTE Electric Company Range Road Coal Combustion Residual Landfill, 3600 Range Road, China Township, Michigan* (July 2016, Revised March and August 2017) and the 2020 HMP. A summary of the groundwater data collected during the verification resampling event is provided on Table 1.

The verification resampling confirmed the slight TDS exceedance at MW-16-04 (5,400 mg/L with a PL of 5,300 mg/L) and did not confirm the sulfate PL exceedance at MW-16-05 (7.5 mg/L with a PL of 10 mg/L). The following discussion presents the ASD for the confirmed prediction limit exceedances for TDS at MW-16-04.

Ms. Mary Carnagie EGLE August 16, 2021 Page 3

TDS at MW-16-04: The SSI of TDS at MW-16-04, shown graphically as data points greater than the prediction limit in Figure 3, is the result of natural variability in groundwater quality at the site and not the result of a release from the RRLF CCR unit. Multiple lines of evidence are provided in support of this conclusion and are as follows:

- Laboratory precision and accuracy in TDS analysis The laboratory-reported TDS concentrations for the MW-16-04 groundwater samples collected during the first semiannual 2021 sampling event (May 2021 original sample and the June 2021 confirmation sample) are slightly higher than the PL. However, the precision and accuracy range for TDS is +/- 20%. As such, the PL for each of these samples is within the margin of error of the laboratory results.
- Insufficient background sampling timeline to account for long-term trends Temporal variability in TDS concentrations observed in the groundwater at RRLF during the background sampling events provides evidence of the heterogeneity of this constituent in groundwater (Figure 3). The short duration of the background sampling events limits the ability of the statistical analysis to capture the natural temporal trends in the groundwater quality at the RRLF. In addition, the May (5,600 mg/L) and June (5,400 mg/L) 2021 groundwater samples had TDS detected at concentrations that were only slightly above the MW-16-04 PL of 5,300 mg/L.
- Lack of similar increase in other indicator parameters The lack of SSIs for any other parameters within the same monitoring well and across the other wells within the monitoring well network during this event also supports a source other than CCR for the observed TDS SSI at MW-16-04.
- Time of travel analysis The clay formation immediately beneath the RRLF CCR unit provides a natural geologic barrier to migration of CCR constituents to the underlying aquifer. The vertical extent of the clay layer beneath the CCR unit is shown in Figures 5 through 7 as cross-sections. Figure 4 shows the cross-section locations in plan view. Conservatively calculating a time of travel for liquid from the base of the RRLF through a minimum of 86 feet of clay to the underlying upper aquifer yields over 1,300 years of travel time (TRC, October 2017; Revised April 2020a). The RRLF began accepting coal ash in approximately 1950, therefore, based on this analysis, there is no potential for indicator parameters to have migrated to the uppermost usable aquifer.

Conclusions and Recommendations

The information provided in this report serves as the ASD for the DTE Electric RRLF, was prepared in accordance with 40 CFR 257.94(e)(2) of the CCR Rule and the 2020 HMP and demonstrates that the TDS SSI determined based on the May 2021 detection monitoring event is not due to a release of CCR leachate into the groundwater. Therefore, based on the information provided in this ASD, DTE Electric will continue detection monitoring as per 40 CFR 257.94 at the RRLF CCR unit.

Ms. Mary Carnagie EGLE August 16, 2021 Page 4

Signatures and Certifications

Engineer Certification Statement

I hereby certify that the alternative source demonstration presented within this document for the RRLF CCR unit has been prepared to meet the requirements of Title 40 CFR §257.94(e) 2 of the Federal CCR Rule and the May 2020 *Hydrogeological Monitoring Plan for the DTE Electric Company Range Road Ash Disposal Facility* (2020 HMP). This document is accurate and has been prepared in accordance with good engineering practices, including the consideration of applicable industry standards, and with the requirements of Title 40 CFR §257.94(e) 2 and the 2020 HMP.

Name: David B. McKenzie, P.E.	Expiration Date: October 31, 2021	DAVID B * MCKENZIE ENGINEER
Company: TRC Engineers Michigan, Inc.	Date:	POEtecsionA

In addition, the signature below certifies that this letter report was prepared under the direction of a qualified groundwater scientist in accordance with the EGLE-approved HMP and the Stats Plan. A copy of this report will be placed in the facility file.

Sincerely,

TRC

Vment E. Bremy Vincent E. Buening, C.P.G

Sr. Project Manager

Attachments

- Table 1
 Comparison of Appendix III and Part 115 Groundwater Parameter Results to Background Limits – Second Quarter 2021
- Figure 1 Site Location Map
- Figure 2 Uppermost Usable Aquifer Monitoring Well Network and Site Plan
- Figure 3 Total Dissolved Solids at MW-16-04
- Figure 4 Cross Section Locator Map
- Figure 5 Generalized Geologic Cross Section A-A'
- Figure 6 Generalized Geologic Cross Section B-B'
- Figure 7 Generalized Geologic Cross Section C-C'

Appendix A References

cc: Christopher P. Scieszka, DTE Electric Company

TRC

LB Holm

Sarah B. Holmstrom, P.G.

Senior Hydrogeologist

X:\WPAAM\PJT2\413591\0000 - RRLF\ASD\L413591.0 ASD.DOCX

Table

Table 1 Comparison of Appendix III and Part 115 Groundwater Parameter Results to Background Limits – Second Quarter 2021 Uppermost Usable Aquifer DTE Electric Company - Range Road Landfill

S	ample Location:	MW-	16-01	MW-1	16-02	MW-1	16-03		MW-16-04			MW-16-05		MW-	16-06	MW-	·16-07
	Sample Date:	5/17/2021	PL	5/17/2021	PL	5/17/2021	PL	5/19/2021	6/25/2021	PL	5/18/2021	6/28/2021	Ы	5/17/2021	PL	5/18/2021	PL
Constituent	Unit	Data		Data	ΓL	Data	ΓL	Da	ata		Da	ata	ΓL	Data	ГЦ	Data	- FL
Conductivity (Field)	umhos/cm	1,528	NA	1,459	NA	1,287	NA	5,879	9,320	NA	1,463	2,072	NA	1,271	NA	947	NA
Appendix III																	
Boron	ug/L	510	560	1,000	1,100	1,100	1,200	980		1,100	1,200		1,400	970	1,200	850	950
Calcium	ug/L	79,000	89,000	22,000	24,000	20,000	21,000	66,000		67,000	19,000		19,000	35,000 ⁽¹⁾	31,000	45,000	66,000
Chloride	mg/L	700	770	650	720	520	550	3,200		3,600	560		620	500	590	350 ⁽²⁾	330
Fluoride	mg/L	0.84	0.95	2.1	2.1	2.2	2.3	1.5		1.6	1.9		1.9	1.5	1.6	1.3	1.3
pH, Field	SU	7.2	7.1 - 8.4	8.2	8.2 - 9.0	8.0	8.0 - 8.8	7.5	7.9	7.5 - 8.5	8.3	8.0	8.0 - 8.9	7.6	7.6 - 8.4	7.9	7.2 - 8.3
Sulfate	mg/L	31	43	<10	10	<10	10	<5.0		50	15	7.5	10	60 ⁽³⁾	31	3.4	120
Total Dissolved Solid	s mg/L	1,200	1,300	1,100	1,200	970	1,200	5,600	5,400	5,300	970		1,200	1,000	1,100	710	770
Part 115																	
Iron	ug/L	1,400	n <8	930	n <8	530	n <8	980		n <8	220		n <8	600	n <8	3,400	n <8

Notes:

ug/L - micrograms per liter.

mg/L - milligrams per liter.

SU - standard units; pH is a field parameter.

umhos/cm - micromhos per centimeter.

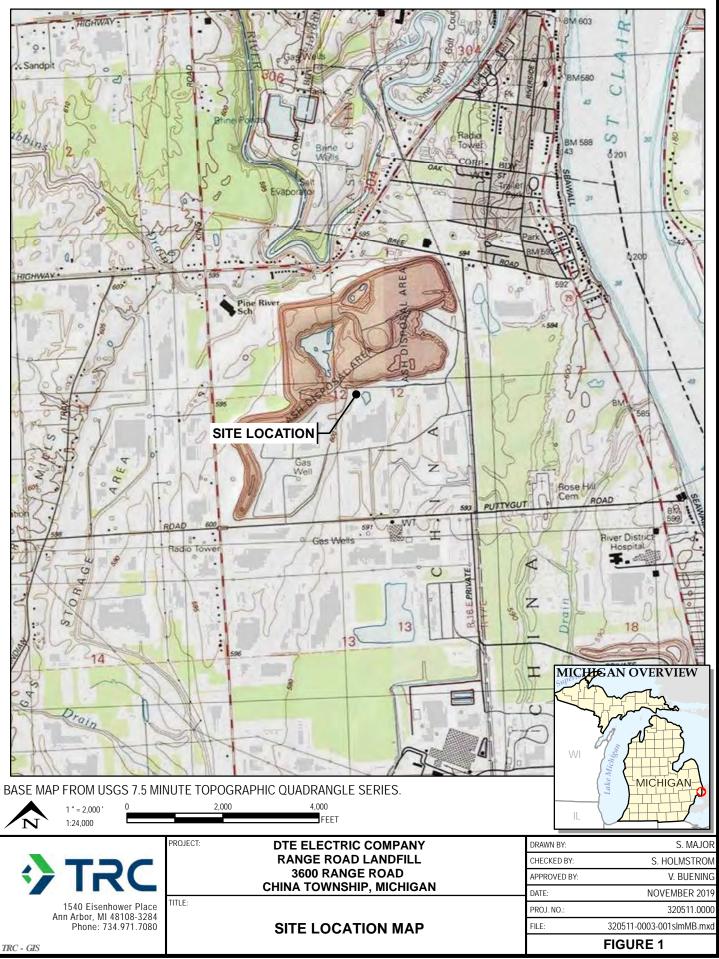
NA - Not applicable.

n - number of data points

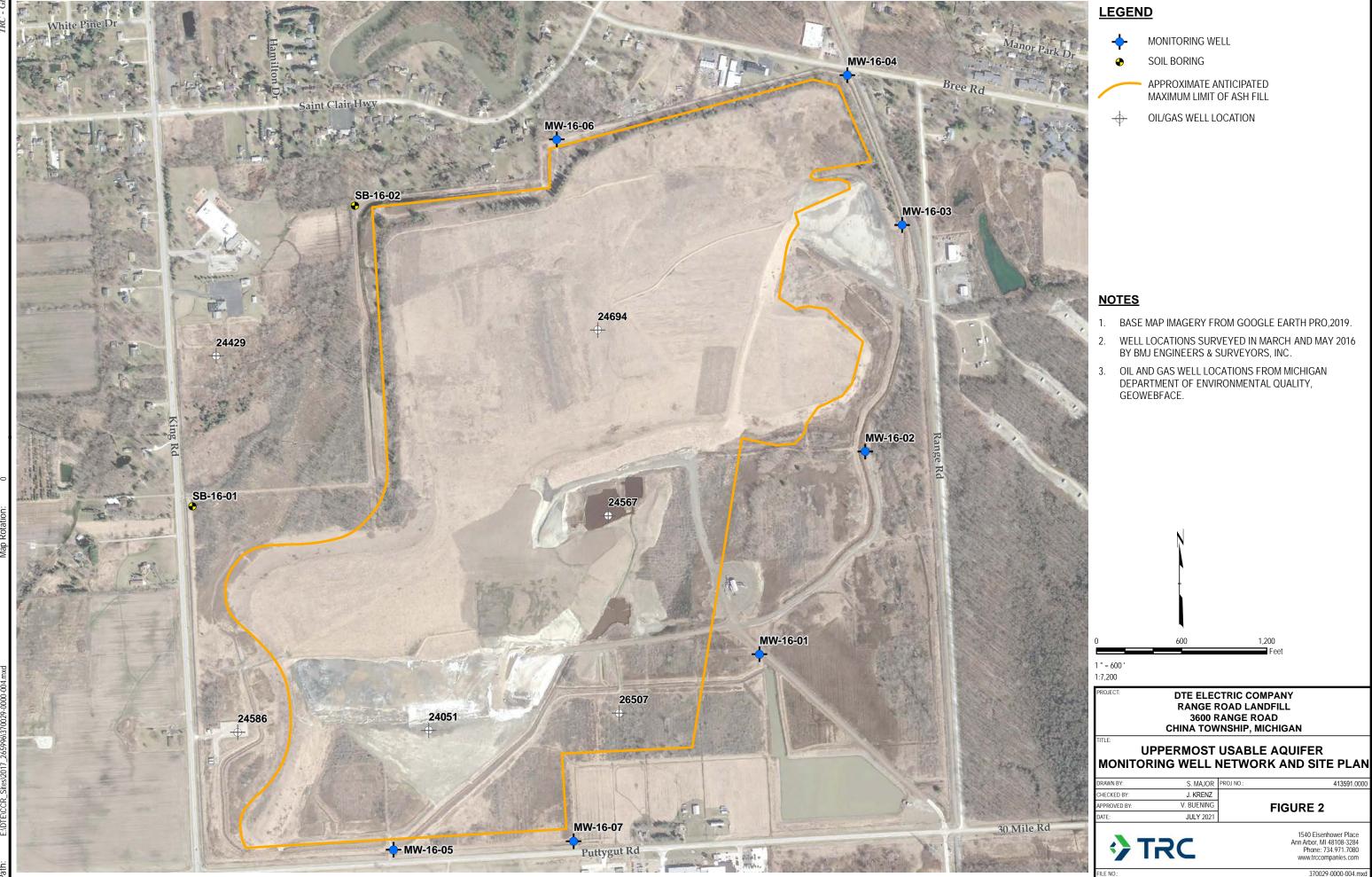
All metals were analyzed as total unless otherwise specified.

Bold font indicates an exceedance of the Prediction Limit (PL).

RESULT Shading and bold font indicates a confirmed exceedance of the Prediction Limit (PL).


(1) - Concentration addressed through First 2019 Semiannual alternative source demonstration dated August 2019.

(2) - Concentration addressed through initial alternative source demonstration dated April 2018.


(3) - Concentration addressed through First 2018 semiannual alternative source demonstration dated August 2018.

Figures

E:\DTE\CCR_Sites\2017_265996\320511-0003-001slmMB.mxd -- Saved By: SMAJOR on 11/7/2019, 10:21:30 AM

(Foot) E

DRAWN BY:	S. MAJOR	PROJ NO.:	413591.0000
CHECKED BY:	J. KRENZ		
APPROVED BY:	V. BUENING	FIGURE	2
DATE:	JULY 2021		

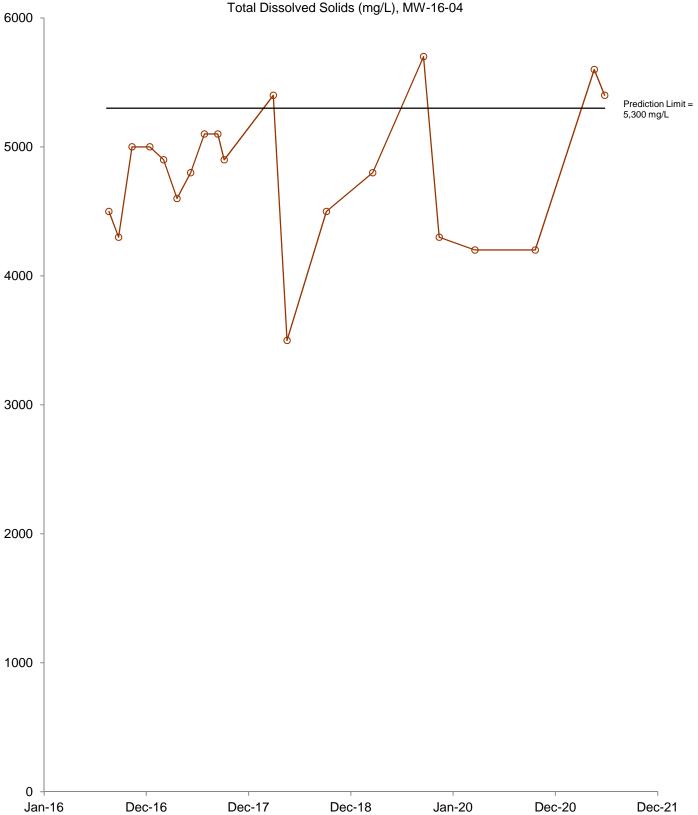
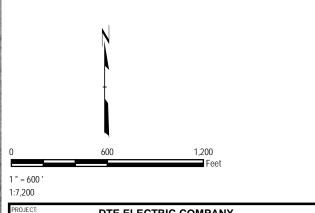


Figure 3 Total Dissolved Solids (mg/L), MW-16-04



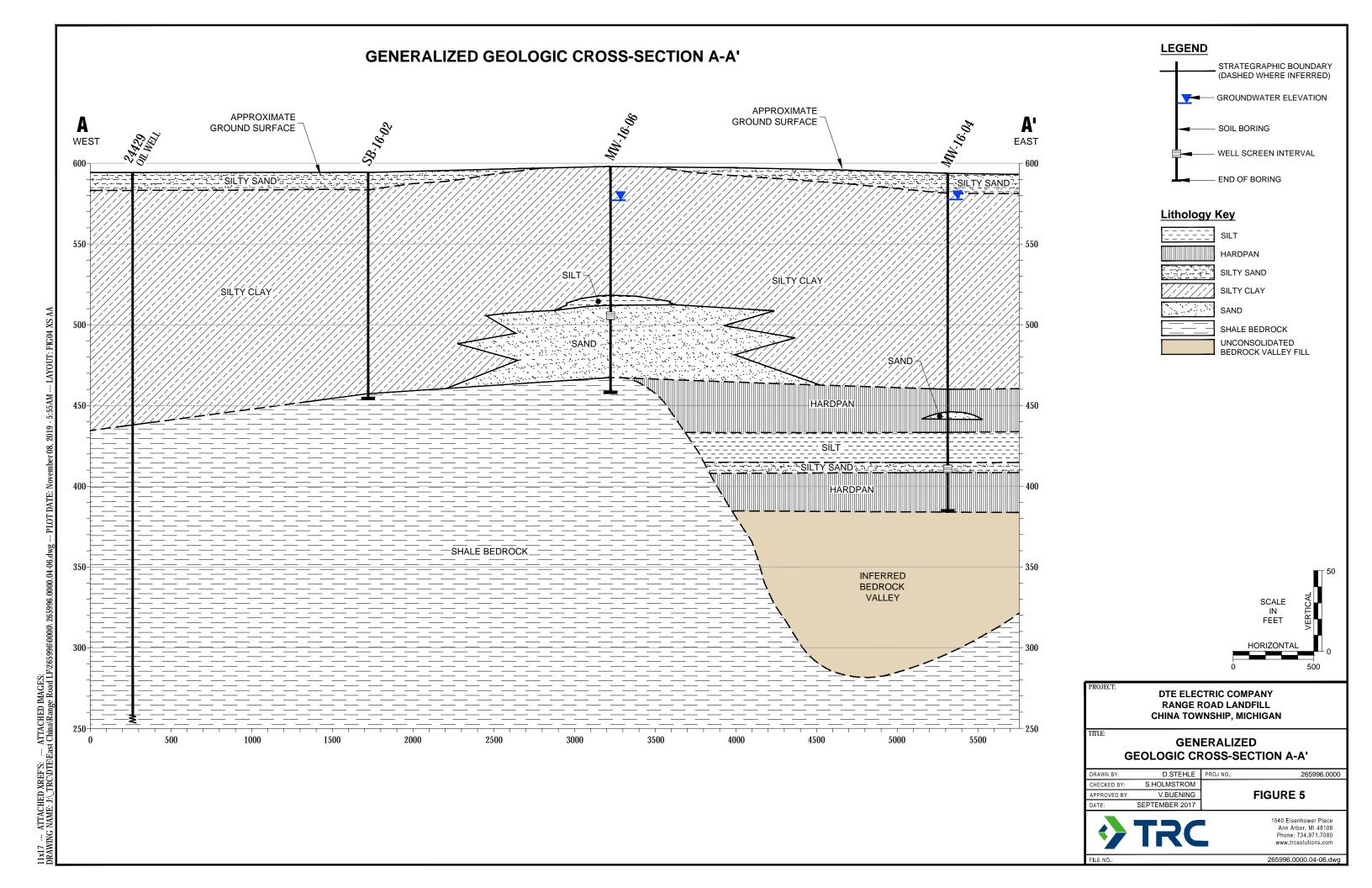
- SOIL BORING
 - APPROXIMATE ANTICIPATED MAXIMUM LIMIT OF ASH FILL
- OIL/GAS WELL LOCATION
- CROSS SECTION LINES
- ← APPROXIMATE AQUIFER BOUNDARY
- APPROXIMATE EDGE OF BEDROCK VALLEY

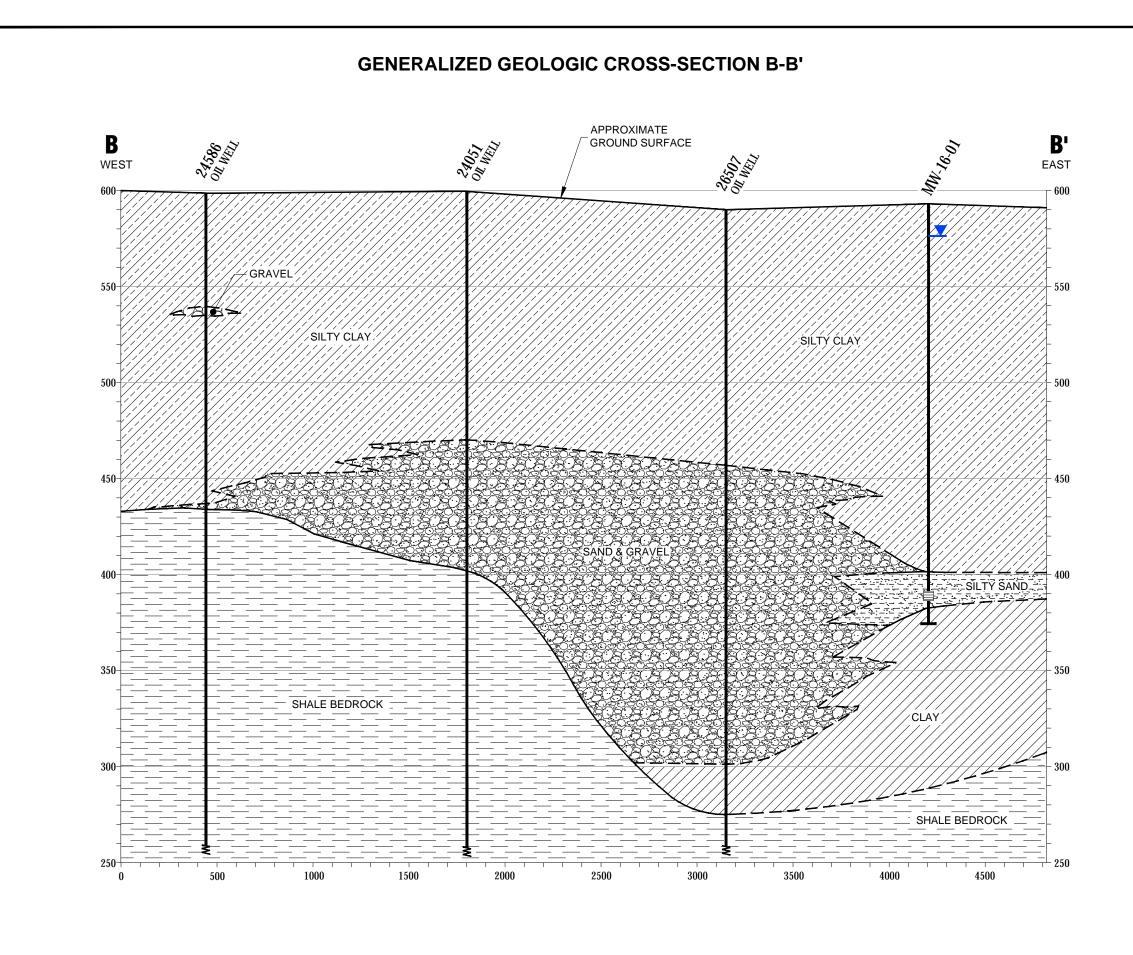
NOTES

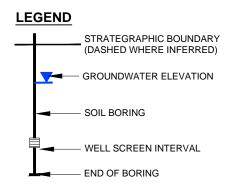
- 1. BASE MAP IMAGERY FROM GOOGLE EARTH PRO, 2019.
- 2. WELL LOCATIONS SURVEYED IN MARCH AND MAY 2016 BY BMJ ENGINEERS & SURVEYORS, INC.
- 3. OIL AND GAS WELL LOCATIONS FROM MICHIGAN DEPARTMENT OF ENVIRONMENTAL QUALITY, GEOWEBFACE.

DTE ELECTRIC COMPANY RANGE ROAD LANDFILL 3600 RANGE ROAD CHINA TOWNSHIP, MICHIGAN

TITLE:

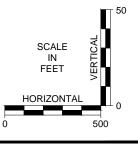

CROSS SECTION LOCATOR MAP


DRAWN BY:	S. MAJOR	PROJ NO.: 265996.00	00
CHECKED BY:	S HOLMSTROM		
APPROVED BY:	V BUENING	FIGURE 4	
DATE:	NOVEMBER 2019		
		1540 Eisenhower Place	



1540 Eisenhower Place Ann Arbor, MI 48108-3284 Phone: 734.971.7080 www.trcsolutions.com

320511-0000-008.mxd

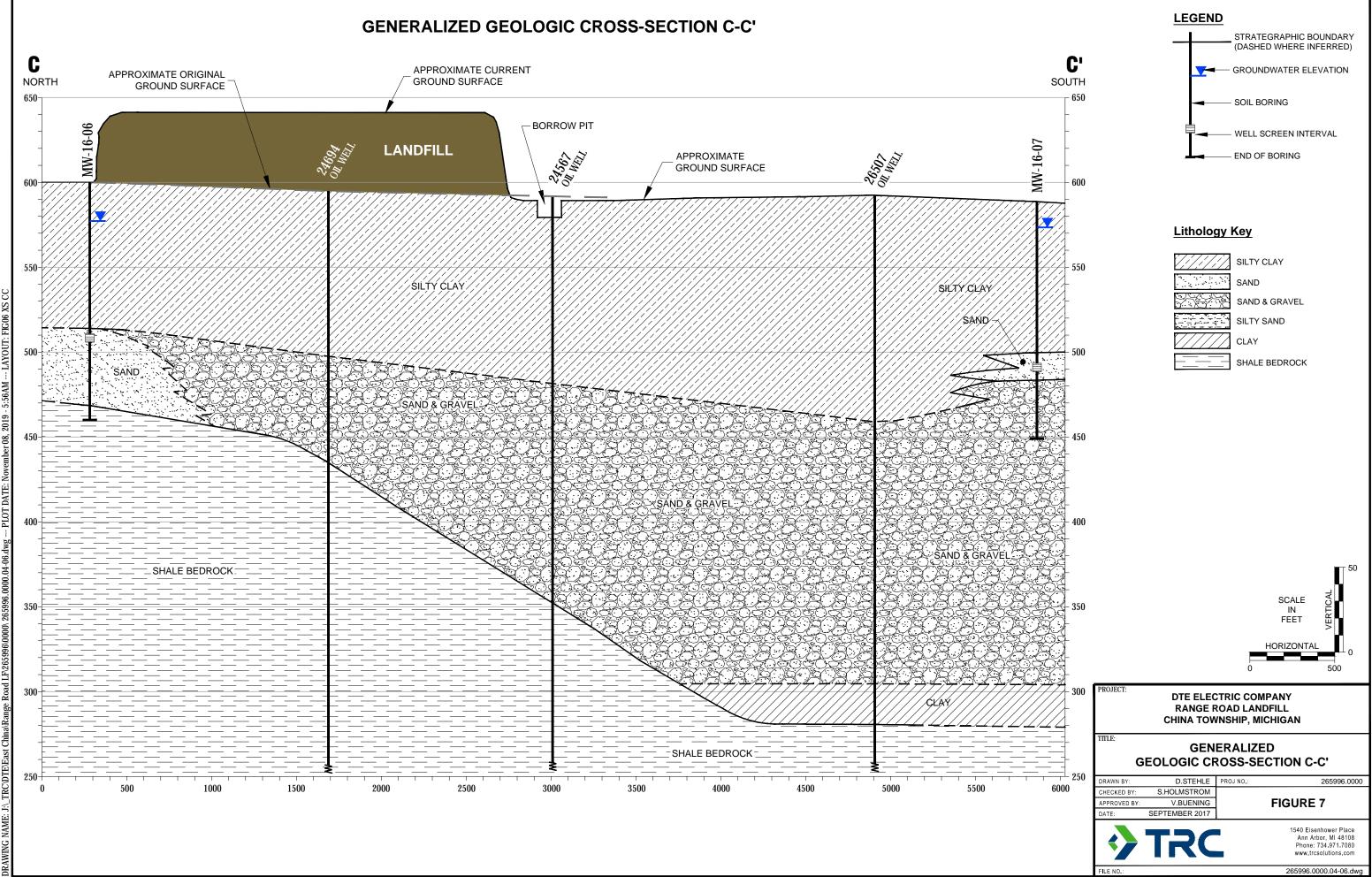


Lithology Key

SILTY CLAY GRAVEL SAND & GRAVEL SILTY SAND CLAY SHALE BEDROCK

DTE ELECTRIC COMPANY RANGE ROAD LANDFILL CHINA TOWNSHIP, MICHIGAN

TITLE:


FILE NO .:

PROJECT:

GENERALIZED **GEOLOGIC CROSS-SECTION B-B'**

DRAWN BY:	D.STEHLE	PROJ NO.:	265996.0000
CHECKED BY:	S.HOLMSTROM		
APPROVED BY:	V.BUENING		FIGURE 6
DATE:	SEPTEMBER 2017		
\diamond	TRC		1540 Eisenhower Place Ann Arbor, MI 48108 Phone: 734.971.7080 www.trcsolutions.com

265996.0000.04-06.dwg

ATTACHED IMAGES ATTACHED XREF'S: NAME: J:\ TRC\DTE 11x17 --- / DRAWING

Appendix A References

References

- RMT, Inc. Michigan. November 26, 2008. Remedial Action Plan for Off-Site Groundwater (Revision 4), The Detroit Edison Company Range Road Ash Disposal Facility, China Township, Michigan. Prepared for The Detroit Edison Company.
- RMT, Inc. Michigan. November 2008. Performance Monitoring Plan for Off-Site Shallow Groundwater Remedial Action, The Detroit Edison Company Range Road Ash Disposal Facility, China Township, Michigan. Prepared for The Detroit Edison Company.
- TRC. July 2016, Revised March and August 2017. CCR Groundwater Monitoring and Quality Assurance Project Plan – DTE Electric Company Range Road Coal Combustion Residual Landfill, 3600 Range Road, China Township, Michigan. Prepared for DTE Electric Company.
- TRC. October 2017, Revised April 2020a. Uppermost Usable Aquifer Groundwater Monitoring System Summary Report – DTE Electric Company Range Road Coal Combustion Residual Landfill, 3600 Range Road, China Township, Michigan. Prepared for DTE Electric Company.
- TRC. October 2017, Revised April 2020b. Uppermost Usable Aquifer Groundwater Statistical Evaluation Plan – DTE Electric Company Range Road Coal Combustion Residual Landfill, 3600 Range Road, China Township, Michigan. Prepared for DTE Electric Company.
- TRC. November 2019, Revised May 2020. Hydrogeologic Monitoring Plan for the DTE Electric Company Range Road Ash Disposal Facility, China Township, St. Clair County, Michigan. Prepared for DTE Electric Company.
- TRC. July 2021. Second Quarter 2021 Hydrogeologic Monitoring and Performance Monitoring Report, DTE Electric Company, Range Road Ash Disposal Facility, 3600 Range Road, China Township, Michigan. Prepared for DTE Electric Company.
- USEPA. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance. Office of Conservation and Recovery. EPA 530/R-09-007.
- USEPA. April 2015. 40 CFR Parts 257 and 261. Hazardous and Solid Waste Management System: Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule. 80 Federal Register 74 (April 17, 2015), pp. 21301-21501 (80 FR 21301).
- USEPA. July 2018. 40 CFR Part 257. Hazardous and Solid Waste Management System: Disposal of Coal Combustion Residuals from Electric Utilities; Amendments to the National Minimum Criteria (Phase One, Part One); Final Rule. 83 Federal Register 146 (July 30, 2018), pp. 36435-36456 (83 FR 36435).
- USEPA. April 2018. Barnes Johnson (Office of Resource Conservation and Recovery) to James Roewer (c/o Edison Electric Institute) and Douglas Green, Margaret Fawal (Venable LLP). Re: Coal Combustion Residuals Rule Groundwater Monitoring Requirements. April 30, 2018. United States Environmental Protection Agency, Washington, D.C. 20460. Office of Solid Waste and Emergency Response, now the Office of Land and Emergency Management.

Appendix B Laboratory Analytical Reports

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Canton 4101 Shuffel Street NW North Canton, OH 44720 Tel: (330)497-9396

Laboratory Job ID: 240-150045-1

Client Project/Site: CCR DTE RRLF HMP Uppermost Aquifer

For:

LINKS

Review your project results through

Total Access

Have a Question?

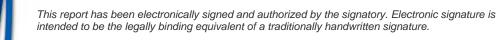
Ask-

The

www.eurofinsus.com/Env

Visit us at:

Expert


TRC Environmental Corporation. 1540 Eisenhower Place Ann Arbor, Michigan 48108-7080

Attn: Mr. Vincent Buening

Brooks

Authorized for release by: 6/7/2021 4:13:23 PM

Kris Brooks, Project Manager II (330)966-9790 Kris.Brooks@Eurofinset.com

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Method Summary	5
Sample Summary	6
Detection Summary	7
Client Sample Results	9
QC Sample Results	18
QC Association Summary	20
Lab Chronicle	22
Certification Summary	25
Chain of Custody	26

Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count

Job ID: 240-150045-1

Qualifiers

TEQ

TNTC

	3
Qualifier Description	4
Indicates the analyte was analyzed for but not detected.	
emistry	5
Qualifier Description	
Sample was prepped or analyzed beyond the specified holding time	6
Indicates the analyte was analyzed for but not detected.	
	7
These commonly used abbreviations may or may not be present in this report.	8
Listed under the "D" column to designate that the result is reported on a dry weight basis	
Percent Recovery	9
Contains Free Liquid	3
Colony Forming Unit	
Contains No Free Liquid	
Duplicate Error Ratio (normalized absolute difference)	
Dilution Factor	
Detection Limit (DoD/DOE)	
Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
Decision Level Concentration (Radiochemistry)	
Estimated Detection Limit (Dioxin)	13
Limit of Detection (DoD/DOE)	
Limit of Quantitation (DoD/DOE)	
EPA recommended "Maximum Contaminant Level"	
Minimum Detectable Activity (Radiochemistry)	
Minimum Detectable Concentration (Radiochemistry)	
Method Detection Limit	
Minimum Level (Dioxin)	
Most Probable Number	
Method Quantitation Limit	
Not Calculated	
Not Detected at the reporting limit (or MDL or EDL if shown)	
Negative / Absent	
Positive / Present	
Practical Quantitation Limit	
Presumptive	
Quality Control	
Relative Error Ratio (Radiochemistry)	
Reporting Limit or Requested Limit (Radiochemistry)	
Relative Percent Difference, a measure of the relative difference between two points	
Toxicity Equivalent Factor (Dioxin)	
	Indicates the analyte was analyzed for but not detected. mistry Qualifier Description Sample was prepped or analyzed beyond the specified holding time Indicates the analyte was analyzed for but not detected. These commonly used abbreviations may or may not be present in this report. Listed under the "D" column to designate that the result is reported on a dry weight basis Percent Recovery Contains Free Liquid Colony Forming Unit Contains No Free Liquid Duplicate Error Ratio (normalized absolute difference) Dilution Factor Detection Limit (DoD/DOE) Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample Decision Level Concentration (Radiochemistry) Estimated Detection Limit (Dioxin) Limit of Detection CoD/DOE) EPA recommended "Maximum Contaminant Level" Minimum Detectable Concentration (Radiochemistry) Method Detection Limit Minimum Level (Dixin) Minimum Detectable Concentration (Radiochemistry) Method Quantitation Limit Not Calculated Not Detected Limit (or MDL or EDL if shown) Negative / Absent Practical Quantitation Limit Practical Quantitation L

Job ID: 240-150045-1

Laboratory: Eurofins TestAmerica, Canton

Narrative

Job Narrative 240-150045-1

Comments

No additional comments.

Receipt

The samples were received on 5/21/2021 6:45 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 1.2° C.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

Method SM 2540C: The following samples were analyzed outside of analytical holding time due to method being added after hold time expired MW-16-01 (240-150045-1), MW-16-02 (240-150045-2), MW-16-03 (240-150045-3), MW-16-05 (240-150045-5), MW-16-06 (240-150045-6), MW-16-07 (240-150045-7), DUP-01 (240-150045-8) and EB-01 (240-150045-9).

Method 9056A: The following samples were diluted due to the nature of the sample matrix: MW-16-02 (240-150045-2), MW-16-03 (240-150045-3) and MW-16-04 (240-150045-4). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Method Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE RRLF HMP Uppermost Aquifer

Method	Method Description	Protocol	Laboratory	
6010B	Metals (ICP)	SW846	TAL CAN	-
6020	Metals (ICP/MS)	SW846	TAL CAN	
9056A	Anions, Ion Chromatography	SW846	TAL CAN	
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL CAN	
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	TAL CAN	

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Sample Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE RRLF HMP Uppermost Aquifer

Job ID: 240-150045-1

ab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset
10-150045-1	MW-16-01	Water	05/17/21 12:44	05/20/21 18:45	
40-150045-2	MW-16-02	Water	05/17/21 13:39	05/20/21 18:45	
40-150045-3	MW-16-03	Water	05/17/21 14:33	05/20/21 18:45	
40-150045-4	MW-16-04	Water	05/19/21 09:52	05/20/21 18:45	
40-150045-5	MW-16-05	Water	05/18/21 13:53	05/20/21 18:45	
40-150045-6	MW-16-06	Water	05/17/21 15:10	05/20/21 18:45	
10-150045-7	MW-16-07	Water	05/18/21 14:55	05/20/21 18:45	
40-150045-8	DUP-01	Water	05/17/21 00:00	05/20/21 18:45	
40-150045-9	EB-01	Water	05/17/21 11:40	05/20/21 18:45	

Detection Summary

RL

100

1000

100

10

1.0

20

0.050

Unit

ug/L

ug/L

ug/L

mg/L

mg/L

mg/L

mg/L

Result Qualifier

510

79000

1400

700

0.84

31

1200 H

Client: TRC Environmental Corporation. Project/Site: CCR DTE RRLF HMP Uppermost Aquifer

Client Sample ID: MW-16-01

Analyte

Calcium

Chloride

Fluoride

Sulfate

Total Dissolved Solids

Iron

Boron

Prep Type

Total Recoverable

Total Recoverable

Total Recoverable

Total/NA

Total/NA

Total/NA

Total/NA

5
7
8
9

Lab Sample ID: 240-150045-2

Lab Sample ID: 240-150045-3

Lab Sample ID: 240-150045-4

Lab Sample ID: 240-150045-5

Lab Sample ID: 240-150045-1

Dil Fac D Method

1

1

1

10

1

1

1

6010B

6020

6020

9056A

9056A

9056A

SM 2540C

Analyte	Result Qualifier	RL	Unit	Dil Fac	0 Method	Prep Type
Boron	1000	100	ug/L	1	6010B	Total
						Recoverable
Calcium	22000	1000	ug/L	1	6020	Total
						Recoverable
Iron	930	100	ug/L	1	6020	Total
						Recoverable
Chloride	650	10	mg/L	10	9056A	Total/NA
Fluoride	2.1	0.050	mg/L	1	9056A	Total/NA
Total Dissolved Solids	1100 H	20	mg/L	1	SM 2540C	Total/NA

Client Sample ID: MW-16-03

Client Sample ID: MW-16-02

Analyte	Result 0	Qualifier	RL	Unit	Dil Fac	D	Method	Prep Type
Boron	1100		100	ug/L	1	_ (6010B	Total
								Recoverable
Calcium	20000		1000	ug/L	1	(6020	Total
								Recoverable
Iron	530		100	ug/L	1	(6020	Total
								Recoverable
Chloride	520		10	mg/L	10	9	9056A	Total/NA
Fluoride	2.2		0.050	mg/L	1	9	9056A	Total/NA
Total Dissolved Solids	970 H	4	20	mg/L	1	:	SM 2540C	Total/NA

Client Sample ID: MW-16-04

Analyte	Result Qualifier	RL	Unit	Dil Fac D	Method	Prep Туре
Boron	980	100	ug/L	1	6010B	Total
						Recoverable
Calcium	66000	1000	ug/L	1	6020	Total
						Recoverable
Iron	980	100	ug/L	1	6020	Total
						Recoverable
Chloride	3200	25	mg/L	25	9056A	Total/NA
Fluoride	1.5	0.25	mg/L	5	9056A	Total/NA
Total Dissolved Solids	5600	50	mg/L	1	SM 2540C	Total/NA

Client Sample ID: MW-16-05

Analyte	Result Qualifier	RL	Unit	Dil Fac D	Method	Prep Type
Boron	1200	100	ug/L	1	6010B	Total
						Recoverable

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Canton

Detection Summary

RL

1000

100

10

1.0

20

RL

0.050

1.0

20

0.050

Result Qualifier

19000

220

560

1.9

15

1.5

60

1000 H

970 H

Result Qualifier

Client: TRC Environmental Corporation. Project/Site: CCR DTE RRLF HMP Uppermost Aquifer

Client Sample ID: MW-16-05 (Continued)

Analyte

Calcium

Chloride

Fluoride

Sulfate

Analyte

Calcium

Chloride

Fluoride

Sulfate

Total Dissolved Solids

Iron

Boron

Total Dissolved Solids

Iron

Prep Type

Total Recoverable

Total Recoverable

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Total Recoverable

Total Recoverable

Total Recoverable

Total/NA

Total/NA

Total/NA

Total/NA

Lab Sample ID: 240-150045-5

Dil Fac D Method

1

1

10

1

1

1

Dil Fac D

1

1

1

6020

6020

9056A

9056A

9056A

Method

9056A

9056A

SM 2540C

Lab Sample ID: 240-150045-7

Lab Sample ID: 240-150045-8

Lab Sample ID: 240-150045-9

SM 2540C

Lab Sample ID: 240-150045-6

7

100 6010B 970 ug/L 1 35000 1000 6020 ug/L 1 600 6020 100 ug/L 1 500 5.0 5 9056A mg/L

Unit

ug/L

ug/L

mg/L

mg/L

mg/L

mg/L

Unit

mg/L

mg/L

mg/L

Client Sample ID: MW-16-07

Client Sample ID: MW-16-06

Analyte	Result Qualifier	RL	Unit	Dil Fac	Method	Prep Type
Boron	850	100	ug/L	1	6010B	Total
						Recoverable
Calcium	45000	1000	ug/L	1	6020	Total
						Recoverable
Iron	3400	100	ug/L	1	6020	Total
						Recoverable
Chloride	350	5.0	mg/L	5	9056A	Total/NA
Fluoride	1.3	0.050	mg/L	1	9056A	Total/NA
Sulfate	3.4	1.0	mg/L	1	9056A	Total/NA
Total Dissolved Solids	710 H	10	mg/L	1	SM 2540C	Total/NA

Client Sample ID: DUP-01

Analyte	Result Qual	ifier RL	Unit	Dil Fac	D Method	Prep Type
Boron	510	100	ug/L	1	6010B	Total
						Recoverable
Calcium	79000	1000	ug/L	1	6020	Total
						Recoverable
Iron	1400	100	ug/L	1	6020	Total
						Recoverable
Chloride	710	10	mg/L	10	9056A	Total/NA
Fluoride	0.87	0.050	mg/L	1	9056A	Total/NA
Sulfate	31	1.0	mg/L	1	9056A	Total/NA
Total Dissolved Solids	1300 H	20	mg/L	1	SM 2540C	Total/NA

Client Sample ID: EB-01

No Detections.

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Canton

Client: TRC Environmental Corporation. Project/Site: CCR DTE RRLF HMP Uppermost Aquifer Job ID: 240-150045-1

5

8 9

Lab Sample ID: 240-150045-1 Matrix: Water

Date Collected: 05/17/21 12:44 Date Received: 05/20/21 18:45

Client Sample ID: MW-16-01

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	510		100	ug/L		05/26/21 14:00	05/27/21 20:33	1
Method: 6020 - Metals (ICP)	MS) - Total Re	coverable						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	79000		1000	ug/L		05/26/21 14:00	05/27/21 18:37	1
Iron	1400		100	ug/L		05/26/21 14:00	05/27/21 18:37	1
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	700		10	mg/L			06/04/21 22:02	10
Fluoride	0.84		0.050	mg/L			06/04/21 21:40	1
Sulfate	31		1.0	mg/L			06/04/21 21:40	1
Total Dissolved Solids	1200	H	20	mg/L			05/26/21 14:00	1

RL

100

RL

1000

100

RL

10

10 20

0.050

Unit

ug/L

Unit

ug/L

ug/L

Unit

mg/L

mg/L

mg/L

mg/L

D

D

D

Prepared

Prepared

Prepared

Client: TRC Environmental Corporation. Project/Site: CCR DTE RRLF HMP Uppermost Aquifer

Method: 6010B - Metals (ICP) - Total Recoverable

Method: 6020 - Metals (ICP/MS) - Total Recoverable

Result Qualifier

Result Qualifier

Result Qualifier

1000

22000

930

650

2.1

10 U

1100 H

Job ID: 240-150045-1

Matrix: Water

Dil Fac

Dil Fac

Dil Fac

1

1

1

10

1

10

1

Lab Sample ID: 240-150045-2

05/26/21 14:00 05/27/21 20:38

05/26/21 14:00 05/27/21 18:39

05/26/21 14:00 05/27/21 18:39

Analyzed

Analyzed

Analyzed

06/04/21 07:02

06/04/21 06:40

06/04/21 07:02

05/26/21 14:00

8

Furofins	TestAmerica,	Canton
Luionna	restAmenta,	Canton

lient	Sam	nple	Resu

Client Sample ID: MW-16-02
Date Collected: 05/17/21 13:39
Date Received: 05/20/21 18:45

Analyte

Boron

Analyte

Calcium

Analyte

Chloride

Fluoride

Sulfate

General Chemistry

Total Dissolved Solids

Iron

Client: TRC Environmental Corporation. Project/Site: CCR DTE RRLF HMP Uppermost Aquifer Job ID: 240-150045-1

5

Lab Sample ID: 240-150045-3 Matrix: Water

Client Sample ID: MW-16-03 Date Collected: 05/17/21 14:33 Date Received: 05/20/21 18:45

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	1100		100	ug/L		05/26/21 14:00	05/27/21 20:42	1
Method: 6020 - Metals (ICP	/MS) - Total Re	coverable						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	20000		1000	ug/L		05/26/21 14:00	05/27/21 18:42	1
Iron	530		100	ug/L		05/26/21 14:00	05/27/21 18:42	1
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	520		10	mg/L			06/04/21 07:45	10
Fluoride	2.2		0.050	mg/L			06/04/21 07:23	1
Sulfate	10	U	10	mg/L			06/04/21 07:45	10
Total Dissolved Solids	970	Η	20	mg/L			05/26/21 14:00	1

Client: TRC Environmental Corporation. Project/Site: CCR DTE RRLF HMP Uppermost Aquifer Job ID: 240-150045-1

5

Client Sample ID: MW-16-04 Date Collected: 05/19/21 09:52 Date Received: 05/20/21 18:45

Lab Sample ID: 240-150045-4 Matrix: Water

Method: 6010B - Metals (IC	P) - Total Reco	overable						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	980		100	ug/L		05/26/21 14:00	05/27/21 20:46	1
Method: 6020 - Metals (ICP)	/MS) - Total Re	coverable						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	66000		1000	ug/L		05/26/21 14:00	05/27/21 18:44	1
Iron	980		100	ug/L		05/26/21 14:00	05/27/21 18:44	1
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	3200		25	mg/L			06/04/21 08:28	25
Fluoride	1.5		0.25	mg/L			06/04/21 08:07	5
Sulfate	5.0	U	5.0	mg/L			06/04/21 08:07	5
Total Dissolved Solids	5600		50	mg/L			05/26/21 14:00	1

RL

100

RL

1000

100

RL

10

1.0

20

0.050

Unit

ug/L

Unit

ug/L

ug/L

Unit

mg/L

mg/L

mg/L

mg/L

D

Prepared

05/26/21 14:00 05/27/21 18:47

05/26/21 14:00 05/27/21 18:47

Client: TRC Environmental Corporation. Project/Site: CCR DTE RRLF HMP Uppermost Aquifer

Method: 6010B - Metals (ICP) - Total Recoverable

Method: 6020 - Metals (ICP/MS) - Total Recoverable

Result Qualifier

Result Qualifier

Result Qualifier

1200

19000

220

560

1.9

15

970 H

Analyzed

06/04/21 09:12

06/04/21 08:50

06/04/21 08:50

05/26/21 14:00

8

		lob ID: 240-15	0015 1	
		100 ID. 240-10	10045-1	
La	ab Sample	ID: 240-150 Matrix	045-5 : Water	
D	Prepared	Analyzed	Dil Fac	5
	03/20/21 14:00	0.5721721 20.51	I	
D	Prepared	Analyzed	Dil Fac	

Matrix	: Water	
lyzed	Dil Fac	5
21 20:51	1	

1

1

10

1

1

1

Dil Fac

Eurofins TestAmerica, Canton

Client Sample ID: MW-16-05

Date Collected: 05/18/21 13:53 Date Received: 05/20/21 18:45

Analyte

Boron

Analyte

Calcium

Analyte

Chloride

Fluoride

Sulfate

General Chemistry

Total Dissolved Solids

Iron

RL

100

RL

1000

100

Unit

ug/L

Unit

ug/L

ug/L

Client: TRC Environmental Corporation. Project/Site: CCR DTE RRLF HMP Uppermost Aquifer

Method: 6010B - Metals (ICP) - Total Recoverable

Method: 6020 - Metals (ICP/MS) - Total Recoverable

Job ID: 240-150045-1

Analyzed

Analyzed

8

Dil Fac

Dil Fac

Dil Fac

1

1

1

5

1

1

1

Eurofins TestAmerica, Canton

6/7/2021

35000

600

Result Qualifier

Result Qualifier

970

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed
Chloride	500		5.0	mg/L			06/04/21 10:39
Fluoride	1.5		0.050	mg/L			06/04/21 10:17
Sulfate	60		1.0	mg/L			06/04/21 10:17
Total Dissolved Solids	1000	Н	20	mg/L			05/26/21 14:00

Client Sample ID: MW-16-06 Date Collected: 05/17/21 15:10

Date Received: 05/20/21 18:45

Analyte

Boron

Analyte

Calcium

Iron

Lab Sample ID: 240-150045-6 **Matrix: Water**

Prepared

Prepared

05/26/21 14:00 05/27/21 21:04

05/26/21 14:00 05/27/21 18:54

05/26/21 14:00 05/27/21 18:54

D

D

Client: TRC Environmental Corporation. Project/Site: CCR DTE RRLF HMP Uppermost Aquifer

Client Sample ID: MW-16-07 Date Collected: 05/18/21 14:55

Date Received: 05/20/21 18:45

_

Job ID: 240-150045-1

5

8 9

Lab Sample ID: 240-150045-7 Matrix: Water

Method: 6010B - Metals (IC Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	850		100	ug/L		05/26/21 14:00	05/27/21 21:08	1
Method: 6020 - Metals (ICP	/MS) - Total Re	coverable						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	45000		1000	ug/L		05/26/21 14:00	05/27/21 18:57	1
Iron	3400		100	ug/L		05/26/21 14:00	05/27/21 18:57	1
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	350		5.0	mg/L			06/04/21 11:22	5
Fluoride	1.3		0.050	mg/L			06/04/21 11:00	1
Sulfate	3.4		1.0	mg/L			06/04/21 11:00	1
Total Dissolved Solids	710	н	10	mg/L			05/26/21 14:00	1

Client: TRC Environmental Corporation. Project/Site: CCR DTE RRLF HMP Uppermost Aquifer Job ID: 240-150045-1

Matrix: Water

Lab Sample ID: 240-150045-8

Client Sample ID: DUP-01 Date Collected: 05/17/21 00:00 Date Received: 05/20/21 18:45

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	510		100	ug/L		05/26/21 14:00	05/27/21 21:13	1
Method: 6020 - Metals (ICP)	MS) - Total Re	coverable						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	79000		1000	ug/L		05/26/21 14:00	05/27/21 18:59	1
Iron	1400		100	ug/L		05/26/21 14:00	05/27/21 18:59	1
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	710		10	mg/L			06/04/21 12:05	10
Fluoride	0.87		0.050	mg/L			06/04/21 11:44	1
Sulfate	31		1.0	mg/L			06/04/21 11:44	1
Total Dissolved Solids	1300	н	20	mg/L			05/26/21 14:00	1

Client: TRC Environmental Corporation. Project/Site: CCR DTE RRLF HMP Uppermost Aquifer Job ID: 240-150045-1

Matrix: Water

8

1

1

Lab Sample ID: 240-150045-9

06/04/21 12:27

05/26/21 14:00

Client Sample ID: EB-01 Date Collected: 05/17/21 11:40 Date Received: 05/20/21 18:45

Sulfate

Total Dissolved Solids

Method: 6010B - Metals (ICP) - Total Recoverable Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Boron 100 U 100 ug/L 05/26/21 14:00 05/27/21 21:17 1 Method: 6020 - Metals (ICP/MS) - Total Recoverable Result Qualifier RL Unit Analyte D Prepared Analyzed Dil Fac Calcium 1000 U 1000 ug/L 05/26/21 14:00 05/27/21 19:02 1 100 U 05/26/21 14:00 05/27/21 19:02 Iron 100 ug/L 1 **General Chemistry** Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Chloride 1.0 U 1.0 mg/L 06/04/21 12:27 1 Fluoride 0.050 U 0.050 mg/L 06/04/21 12:27 1

1.0

10

mg/L

mg/L

1.0 U

10 U H

QC Sample Results

Client: TRC Environmental Corporation. Project/Site: CCR DTE RRLF HMP Uppermost Aquifer

9

Job ID: 240-150045-1

Lab Sample ID: MB 240-487623/1-A Matrix: Water	•										ple ID: Method e: Total Reco	
Analysis Batch: 487903											Prep Batch:	487 <mark>6</mark> 2
		MB										
Analyte		Qualifier		RL		Unit		<u>D</u>	Prepa		Analyzed	Dil Fa
Boron	100	U		100		ug/L			05/26/21	1 14:00	05/27/21 19:38	
_ab Sample ID: LCS 240-487623/2- Matrix: Water	Α						C	ient			Lab Control S	
Analysis Batch: 487903											Prep Batch:	
•			Spike		LCS	LCS					%Rec.	
Analyte			Added	F	Result	Qualifier	Unit		D %F	Rec	Limits	
Boron			1000		960		ug/L			96	80 - 120	
lethod: 6020 - Metals (ICP/MS	5)											
Lab Sample ID: MB 240-487623/1-4									Client	Same	ple ID: Method	Blan
Matrix: Water	•										e: Total Reco	
Analysis Batch: 488009									FIE	ртур	Prep Batch:	
Analysis Datch. 400005	мв	мв									Fiep Batch.	40702
Analyte		Qualifier		RL		Unit		D	Prepa	ared	Analyzed	Dil Fa
Calcium	1000	U	1	000		ug/L			· ·		05/27/21 17:57	
ron	100			100		ug/L			05/26/21	1 14:00	05/27/21 17:57	
Lab Sample ID: LCS 240-487623/3-	Δ						С	ient	Samp	le ID:	Lab Control S	Sampl
Matrix: Water											e: Total Reco	
Analysis Batch: 488009											Prep Batch:	
			Spike		LCS					_	%Rec.	
Analyte			Added			Qualifier	Unit		<u>D</u> %F		Limits	
Calcium			25000	2	24300		ug/L			97	80 - 120	
Iron			5000		4790		ug/L			96	80 - 120	
lethod: 9056A - Anions, Ion C	Chron	natogra	phy									
Lab Sample ID: MB 240-488923/3 Matrix: Water									Client	Samı	ple ID: Method Prep Type: To	
Analysis Batch: 488923												
		MB						_			A	D.1 F.
Analyte		Qualifier		RL _		Unit		<u>D</u>	Prepa	area	Analyzed	Dil Fa
	1.0		•	1.0		mg/L					06/04/21 05:56	
Fluoride	0.050 1.0		0.	.050		mg/L					06/04/21 05:56	
Sulfate	1.0	U		1.0		mg/L					06/04/21 05:56	
Lab Sample ID: LCS 240-488923/4 Matrix: Water							C	ient	Samp	le ID:	Lab Control S Prep Type: To	
Analysis Batch: 488923												

-	Spike	LCS	LCS			%Rec.	
Analyte	Added	Result	Qualifier L	Jnit D	%Rec	Limits	
Chloride	50.0	50.2	n	ng/L	100	90 - 110	
Fluoride	2.50	2.63	n	ng/L	105	90 - 110	
Sulfate	50.0	50.7	n	ng/L	101	90 - 110	

QC Sample Results

Client: TRC Environmental Corporation. Project/Site: CCR DTE RRLF HMP Uppermost Aquifer Job ID: 240-150045-1

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 240-48766 Matrix: Water Analysis Batch: 487669	9/1								С	lier	nt Sam	ple ID: Metho Prep Type:		
		MB	МВ											
Analyte	Res	sult	Qualifier		RL		Unit		D	Pre	epared	Analyzed	0	Dil Fac
Total Dissolved Solids		10	U		10		mg/L					05/26/21 14:00) _	1
Lab Sample ID: LCS 240-4876	69/2							Cli	ent S	am	nole ID:	Lab Control	Sa	mple
Matrix: Water												Prep Type:		
Analysis Batch: 487669														
-				Spike		LCS	LCS					%Rec.		
Analyte				Added		Result	Qualifier	Unit	I	D	%Rec	Limits		
Total Dissolved Solids				683		664		mg/L			97	80 - 120		
Lab Sample ID: 240-150045-1	DU									(Client S	Sample ID: M	W-′	16-01
Matrix: Water												Prep Type:		
Analysis Batch: 487669														
-	Sample	Sam	ple			DU	DU							RPD
Analyte	Result	Qual	ifier			Result	Qualifier	Unit	l	D		RF	D	Limit
Total Dissolved Solids	1200	н				1260		mg/L					2	20

QC Association Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE RRLF HMP Uppermost Aquifer Job ID: 240-150045-1

9 10

11 12

Metals

Prep Batch: 487623

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
240-150045-1	MW-16-01	Total Recoverable	Water	3005A	
240-150045-2	MW-16-02	Total Recoverable	Water	3005A	
240-150045-3	MW-16-03	Total Recoverable	Water	3005A	
240-150045-4	MW-16-04	Total Recoverable	Water	3005A	
240-150045-5	MW-16-05	Total Recoverable	Water	3005A	
240-150045-6	MW-16-06	Total Recoverable	Water	3005A	
240-150045-7	MW-16-07	Total Recoverable	Water	3005A	
240-150045-8	DUP-01	Total Recoverable	Water	3005A	
240-150045-9	EB-01	Total Recoverable	Water	3005A	
MB 240-487623/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 240-487623/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
LCS 240-487623/3-A	Lab Control Sample	Total Recoverable	Water	3005A	

Analysis Batch: 487903

Lab Sample ID 240-150045-1	Client Sample ID	Prep Type Total Recoverable	Matrix Water	Method	Prep Batch 487623	
240-150045-1	MW-16-02	Total Recoverable	Water	6010B	487623	
240-150045-3	MW-16-03	Total Recoverable	Water	6010B	487623	
240-150045-4	MW-16-04	Total Recoverable	Water	6010B	487623	
240-150045-5	MW-16-05	Total Recoverable	Water	6010B	487623	
240-150045-6	MW-16-06	Total Recoverable	Water	6010B	487623	
240-150045-7	MW-16-07	Total Recoverable	Water	6010B	487623	
240-150045-8	DUP-01	Total Recoverable	Water	6010B	487623	
240-150045-9	EB-01	Total Recoverable	Water	6010B	487623	
MB 240-487623/1-A	Method Blank	Total Recoverable	Water	6010B	487623	
LCS 240-487623/2-A	Lab Control Sample	Total Recoverable	Water	6010B	487623	

Analysis Batch: 488009

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
240-150045-1	MW-16-01	Total Recoverable	Water	6020	487623
240-150045-2	MW-16-02	Total Recoverable	Water	6020	487623
240-150045-3	MW-16-03	Total Recoverable	Water	6020	487623
240-150045-4	MW-16-04	Total Recoverable	Water	6020	487623
240-150045-5	MW-16-05	Total Recoverable	Water	6020	487623
240-150045-6	MW-16-06	Total Recoverable	Water	6020	487623
240-150045-7	MW-16-07	Total Recoverable	Water	6020	487623
240-150045-8	DUP-01	Total Recoverable	Water	6020	487623
240-150045-9	EB-01	Total Recoverable	Water	6020	487623
MB 240-487623/1-A	Method Blank	Total Recoverable	Water	6020	487623
LCS 240-487623/3-A	Lab Control Sample	Total Recoverable	Water	6020	487623

General Chemistry

Analysis Batch: 487669

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
240-150045-1	MW-16-01	Total/NA	Water	SM 2540C	
240-150045-2	MW-16-02	Total/NA	Water	SM 2540C	
240-150045-3	MW-16-03	Total/NA	Water	SM 2540C	
240-150045-4	MW-16-04	Total/NA	Water	SM 2540C	
240-150045-5	MW-16-05	Total/NA	Water	SM 2540C	
240-150045-6	MW-16-06	Total/NA	Water	SM 2540C	

Eurofins TestAmerica, Canton

QC Association Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE RRLF HMP Uppermost Aquifer

General Chemistry (Continued)

Analysis Batch: 487669 (Continued)

Lab Sample ID 240-150045-7	Client Sample ID MW-16-07	Prep Type Total/NA	Matrix Water	Method SM 2540C	Prep Batch
240-150045-8	DUP-01	Total/NA	Water	SM 2540C	
240-150045-9	EB-01	Total/NA	Water	SM 2540C	
MB 240-487669/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 240-487669/2	Lab Control Sample	Total/NA	Water	SM 2540C	
240-150045-1 DU	MW-16-01	Total/NA	Water	SM 2540C	

Analysis Batch: 488923

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-150045-1	MW-16-01	Total/NA	Water	9056A	
240-150045-1	MW-16-01	Total/NA	Water	9056A	
240-150045-2	MW-16-02	Total/NA	Water	9056A	
240-150045-2	MW-16-02	Total/NA	Water	9056A	
240-150045-3	MW-16-03	Total/NA	Water	9056A	
240-150045-3	MW-16-03	Total/NA	Water	9056A	
240-150045-4	MW-16-04	Total/NA	Water	9056A	
240-150045-4	MW-16-04	Total/NA	Water	9056A	
240-150045-5	MW-16-05	Total/NA	Water	9056A	
240-150045-5	MW-16-05	Total/NA	Water	9056A	
240-150045-6	MW-16-06	Total/NA	Water	9056A	
240-150045-6	MW-16-06	Total/NA	Water	9056A	
240-150045-7	MW-16-07	Total/NA	Water	9056A	
240-150045-7	MW-16-07	Total/NA	Water	9056A	
240-150045-8	DUP-01	Total/NA	Water	9056A	
240-150045-8	DUP-01	Total/NA	Water	9056A	
240-150045-9	EB-01	Total/NA	Water	9056A	
MB 240-488923/3	Method Blank	Total/NA	Water	9056A	
LCS 240-488923/4	Lab Control Sample	Total/NA	Water	9056A	

Client Sample ID: MW-16-01 Date Collected: 05/17/21 12:44 Date Received: 05/20/21 18:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			487623	05/26/21 14:00	MRL	TAL CAN
Total Recoverable	Analysis	6010B		1	487903	05/27/21 20:33	DSH	TAL CAN
Total Recoverable	Prep	3005A			487623	05/26/21 14:00	MRL	TAL CAN
Total Recoverable	Analysis	6020		1	488009	05/27/21 18:37	DTN	TAL CAN
Total/NA	Analysis	9056A		1	488923	06/04/21 21:40	JWW	TAL CAN
Total/NA	Analysis	9056A		10	488923	06/04/21 22:02	JWW	TAL CAN
Total/NA	Analysis	SM 2540C		1	487669	05/26/21 14:00	AJ	TAL CAN

Client Sample ID: MW-16-02 Date Collected: 05/17/21 13:39

Date Received: 05/20/21 18:45

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			487623	05/26/21 14:00	MRL	TAL CAN
Total Recoverable	Analysis	6010B		1	487903	05/27/21 20:38	DSH	TAL CAN
Total Recoverable	Prep	3005A			487623	05/26/21 14:00	MRL	TAL CAN
Total Recoverable	Analysis	6020		1	488009	05/27/21 18:39	DTN	TAL CAN
Total/NA	Analysis	9056A		1	488923	06/04/21 06:40	JWW	TAL CAN
Total/NA	Analysis	9056A		10	488923	06/04/21 07:02	JWW	TAL CAN
Total/NA	Analysis	SM 2540C		1	487669	05/26/21 14:00	AJ	TAL CAN

Client Sample ID: MW-16-03 Date Collected: 05/17/21 14:33 Date Received: 05/20/21 18:45

Lab Sample ID: 240-150045-3

Lab Sample ID: 240-150045-4

Matrix: Water

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			487623	05/26/21 14:00	MRL	TAL CAN
Total Recoverable	Analysis	6010B		1	487903	05/27/21 20:42	DSH	TAL CAN
Total Recoverable	Prep	3005A			487623	05/26/21 14:00	MRL	TAL CAN
Total Recoverable	Analysis	6020		1	488009	05/27/21 18:42	DTN	TAL CAN
Total/NA	Analysis	9056A		1	488923	06/04/21 07:23	JWW	TAL CAN
Total/NA	Analysis	9056A		10	488923	06/04/21 07:45	JWW	TAL CAN
Total/NA	Analysis	SM 2540C		1	487669	05/26/21 14:00	AJ	TAL CAN

Client Sample ID: MW-16-04 Date Collected: 05/19/21 09:52 Date Received: 05/20/21 18:45

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			487623	05/26/21 14:00	MRL	TAL CAN
Total Recoverable	Analysis	6010B		1	487903	05/27/21 20:46	DSH	TAL CAN
Total Recoverable	Prep	3005A			487623	05/26/21 14:00	MRL	TAL CAN
Total Recoverable	Analysis	6020		1	488009	05/27/21 18:44	DTN	TAL CAN
Total/NA	Analysis	9056A		5	488923	06/04/21 08:07	JWW	TAL CAN

Eurofins TestAmerica, Canton

Lab Sample ID: 240-150045-1

Lab Sample ID: 240-150045-2

Matrix: Water

Matrix: Water

Job ID: 240-150045-1

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Lab Sample ID: 240-150045-4

Lab Sample ID: 240-150045-5

Lab Sample ID: 240-150045-6

Lab Sample ID: 240-150045-7

1 2 3 4 5 6 7 8 9 10 11

Client Sample ID: MW-16-04 Date Collected: 05/19/21 09:52 Date Received: 05/20/21 18:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		25	488923	06/04/21 08:28	JWW	TAL CAN
Total/NA	Analysis	SM 2540C		1	487669	05/26/21 14:00	AJ	TAL CAN

Client Sample ID: MW-16-05 Date Collected: 05/18/21 13:53 Date Received: 05/20/21 18:45

-	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			487623	05/26/21 14:00	MRL	TAL CAN
Total Recoverable	Analysis	6010B		1	487903	05/27/21 20:51	DSH	TAL CAN
Total Recoverable	Prep	3005A			487623	05/26/21 14:00	MRL	TAL CAN
Total Recoverable	Analysis	6020		1	488009	05/27/21 18:47	DTN	TAL CAN
Total/NA	Analysis	9056A		1	488923	06/04/21 08:50	JWW	TAL CAN
Total/NA	Analysis	9056A		10	488923	06/04/21 09:12	JWW	TAL CAN
Total/NA	Analysis	SM 2540C		1	487669	05/26/21 14:00	AJ	TAL CAN

Client Sample ID: MW-16-06 Date Collected: 05/17/21 15:10 Date Received: 05/20/21 18:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			487623	05/26/21 14:00	MRL	TAL CAN
Total Recoverable	Analysis	6010B		1	487903	05/27/21 21:04	DSH	TAL CAN
Total Recoverable	Prep	3005A			487623	05/26/21 14:00	MRL	TAL CAN
Total Recoverable	Analysis	6020		1	488009	05/27/21 18:54	DTN	TAL CAN
Total/NA	Analysis	9056A		1	488923	06/04/21 10:17	JWW	TAL CAN
Total/NA	Analysis	9056A		5	488923	06/04/21 10:39	JWW	TAL CAN
Total/NA	Analysis	SM 2540C		1	487669	05/26/21 14:00	AJ	TAL CAN

Client Sample ID: MW-16-07 Date Collected: 05/18/21 14:55 Date Received: 05/20/21 18:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			487623	05/26/21 14:00	MRL	TAL CAN
Total Recoverable	Analysis	6010B		1	487903	05/27/21 21:08	DSH	TAL CAN
Total Recoverable	Prep	3005A			487623	05/26/21 14:00	MRL	TAL CAN
Total Recoverable	Analysis	6020		1	488009	05/27/21 18:57	DTN	TAL CAN
Total/NA	Analysis	9056A		1	488923	06/04/21 11:00	JWW	TAL CAN
Total/NA	Analysis	9056A		5	488923	06/04/21 11:22	JWW	TAL CAN
Total/NA	Analysis	SM 2540C		1	487669	05/26/21 14:00	AJ	TAL CAN

Client Sample ID: DUP-01 Date Collected: 05/17/21 00:00 Date Received: 05/20/21 18:45

Date Received:	05/20/21 1	8:45						
	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			487623	05/26/21 14:00	MRL	TAL CAN
Total Recoverable	Analysis	6010B		1	487903	05/27/21 21:13	DSH	TAL CAN
Total Recoverable	Prep	3005A			487623	05/26/21 14:00	MRL	TAL CAN
Total Recoverable	Analysis	6020		1	488009	05/27/21 18:59	DTN	TAL CAN
Total/NA	Analysis	9056A		1	488923	06/04/21 11:44	JWW	TAL CAN
Total/NA	Analysis	9056A		10	488923	06/04/21 12:05	JWW	TAL CAN

1

487669 05/26/21 14:00 AJ

Client Sample ID: EB-01 Date Collected: 05/17/21 11:40 Date Received: 05/20/21 18:45

Analysis

SM 2540C

Total/NA

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Lab 3005A 487623 05/26/21 14:00 MRL **Total Recoverable** Prep TAL CAN 6010B **Total Recoverable** Analysis 1 487903 05/27/21 21:17 DSH TAL CAN **Total Recoverable** Prep 3005A 487623 05/26/21 14:00 MRL TAL CAN Total Recoverable 6020 488009 05/27/21 19:02 DTN TAL CAN Analysis 1 9056A TAL CAN Total/NA Analysis 1 488923 06/04/21 12:27 JWW Total/NA Analysis SM 2540C 487669 05/26/21 14:00 AJ TAL CAN 1

Laboratory References:

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Job ID: 240-150045-1

Lab Sample ID: 240-150045-8 Matrix: Water

TAL CAN

Lab Sample ID: 240-150045-9

Matrix: Water

Accreditation/Certification Summary

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Program

State

State

State

State

State

State

State

NELAP

NELAP

NELAP

NELAP

NELAP

NELAP

NELAP

State

State

US Federal Programs

State

NELAP

NELAP

NELAP

Client: TRC Environmental Corporation. Project/Site: CCR DTE RRLF HMP Uppermost Aquifer

Laboratory: Eurofins TestAmerica, Canton

Authority

California

Florida

Georgia

Illinois

lowa

Kansas

Kentucky (UST)

Kentucky (WW)

Minnesota (Petrofund)

Minnesota

New Jersey

New York

Ohio VAP

Pennsylvania

Oregon

Texas

USDA

Virginia

Washington

West Virginia DEP

Connecticut

Job ID: 240-150045-1

Expiration Date

02-23-22

12-31-21

06-30-21

02-23-22

07-31-21

06-01-21 *

04-30-21 *

02-23-22

12-31-21

12-31-21

08-01-21

06-30-21

03-31-22

12-21-23

02-23-22

08-31-21

08-31-21

09-17-21

09-14-21

01-12-22

12-31-21

Identification Number

2927

PH-0590

E87225

200004

E-10336

112225

KY98016

OH00048

3506

OH001

10975

4062

CL0024

68-00340

010101

C971

210

T104704517-18-10

P330-18-00281

4062

421

5

12

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

🐝 eurofins	COC No: 240-82346-31929 1	Page Page Pane 1 nf 1	# qor	Preservation Codes	HCL M NaOH N Zo Apotono O	D Nitric Acid P Na22045 E NetSOd Q Na22045	MeOH R Amchlor S	I foe J DI Water	K EDTA W L EDA Z	Other-	otel Number	I – Special Instructions/Note												re retained longer than 1 month)	the second se		5/20/21 1845 Company	10050 1E 10	Company		Ver 01 16/2019
MICHIGAN 190	Car ler T acking No(s):	State of Origi Lcom	Analysis Reguested																240-150045 Chain of Custody	,				Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For Mon	Special instructions/QC Requirements.	Method of Shipment:	Off Contentime	and the Date Time	Date/Time	Cooler Temperature(s) "C and Other Remarks:	
Chain of Custody Record	Lab PM: Brooks, Kris M				- - - - 	luirde,		(0N	88 OL	5D (У	ple Matrix (www.action.com/com/com/com/com/com/com/com/com/com/	ation Code: XXD	<u> NNX</u>	Water WNXX	Water NNXX	Water W V X X	Water W N X X	water MM X X	Water WN K X	Water W N X X	Water WN XX	Water				Time-	Company Received by	Company Received by	Company Repeived by:	Cooler Temper	
	sampler Juke Kunz	しん		Due Date Requested:	TAT Requested (days):	Compliance Project: A Yes A No	PO#: TBD	₩0 <i>#</i> : 370029 0000 P1 T2	Project #: 24016807	SSOW#:	Sample Type Sample (⊂⊂comp. Sample Date Time G=rcah)	X		S-17-21 1339 6	S-17-21 H33 G	S 4540 12-61-5	5-18-21 1353 G	5-17-21 1510 6	5-18-91 HZZ C	S-17-21 G	S-17-21 1140 G			Poison B Unknown Radiological		Date	Date/Time. 5-22 -21 /1742	Date/Time:	Date/Time:		
Eurofins TestAmerica, Canton $\left(-\frac{1}{2} \right) \left(\right) \right)$ 4101 Shuffel Street NW North Canton OH 44720 Phone (330) 497-9396 Phone (330) 497-0772	Client Information	Client Contact: Mr Vincent Buening	Company: TRC Environmental Corporation.	Address: 1540 Eisenhower Place	Ckty Ann Arbor	State, Zip. MI 48108-7080	Phone: 313-971 7080(Tel) 313-971-9022(Fax)	Emai vbuening@trccompanies.com	Project Name: CCR DTE RRLF HMP Uppermost Aquifer	Site: Michigan	Sample Identification		MW-16-01	mu-16-02	Mw-16-03	MW-16-04	MW-16-05	Mw-16-06	MW-16-07	100-01	EBrol		0	Possible hazard Identification	Deliverable Requested: 1 II II IV Other (specify)	Empty Kit Relinquished by	Reingleshed by Ang	Relief dished by:		Custody Seals Intact: Custody Seal No.	

5

13

Eurofins TestAmerica Canton Sample Receipt Form/Narrative Canton Facility	Login #	150045
Chent IC Environmental Site Name	Cooler un	packed by
	(010	\mathcal{D}
	Other	<u> </u>
FedEx 1st Grd Exp UPS FAS Clipper Client Drop Off TestAmerica Courier Receipt After-hours Drop-off Date/Time Storage Location	Other	
Packing material used. Bubble Wrap Foam Plastic Bag None Other COOLANT Wet Ice Blue Ice Dry Ice Water None		
1 Cooler temperature upon receipt Image: See Multiple Cooler Forming in the cooler forming in	Femp. / L	°C °C
-Were the seals on the outside of the cooler(s) signed & dated? (es) -Were tamper/custody seals on the bottle(s) or bottle kits (LLHg/MeHg)? Yes -Were tamper/custody seals intact and uncompromised? Yes 3 Shippers' packing slip attached to the cooler(s)? Yes 4 Did custody papers accompany the sample(s)? Yes 5 Were the custody papers relinquished & signed in the appropriate place? Yes 6 Was/were the person(s) who collected the samples clearly identified on the COC? Yes 7 Did all bottles arrive in good condition (Unbroken)? Yes 8 Could all bottle labels (ID/Date/Time) be reconciled with the COC? Yes 9 For each sample, does the COC specify preservatives (Y/N), # of containers (Y/N), and sam Yes 10 Were correct bottle(s) used for the test(s) indicated? Yes 11 Sufficient quantity received to perform indicated analyses? Yes 12 Are these work share samples and all listed on the COC? Yes 13 Were all preserved sample(s) at the correct pH upon receipt? Yes 14 Were VOAs on the COC? Yes) No) No mple type of gr No No No No No No No No No No	Tests that are not checked for pH by Receiving: VOAs Oil and Grease TOC rab/comp(Y/N)?
10 was a VOA trip blank present in the cooler(s)? Trip blank Lot # Test 17 Was a LL Hg or Me Hg trip blank present? Yes (
Contacted PM Date by via Verbal Vo	oce Mail Othe	er 🛛
Concerning		
18. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES additional next page	Samples proce	essed by Gan
19 SAMPLE CONDITION	a time had an	wood
Sample(s) were received after the recommended holdin Sample(s) were received i		
Sample(s)		
20. SAMPLE PRESERVATION		
Sample(s)	ner preserved n	n the laboratory
/OA Sample Preservation - Date/Time VOAs Frozen	·····	

Temperature readings.

	5
MW 16-01 240-150045-A 1 Plastic 250ml - with Nitric Acid <2	
MW-16-02 240-150045-A-2 Plastic 250ml with Nitric Acid <2	
MW-16-03 240-150045-A-3 Plastic 250ml - with Nitric Acid <2	
MW-16-04 240-150045-A-4 Plastic 250ml - with Nitric Acid <2	
MW-16-05 240-150045-A-5 Plastic 250ml - with Nitric Acid <2	6
MW-16-06 240-150045-A-6 Plastic 250ml - with Nitric Acid <2	0
MW-16-07 240-150045 A-7 Plastic 250ml - with Nitric Acid <2	9
DUP-01 240-150045 A-8 Plastic 250ml - with Nitric Acid <2	1
EB-01 240-150045-A-9 Plastic 250ml - with Nitric Acid <2	

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Canton 4101 Shuffel Street NW North Canton, OH 44720 Tel: (330)497-9396

Laboratory Job ID: 240-152019-1

Client Project/Site: CCR DTE RRLF

For:

TRC Environmental Corporation. 1540 Eisenhower Place Ann Arbor, Michigan 48108-7080

Attn: Mr. Vincent Buening

Meara ativ

Authorized for release by: 7/6/2021 5:39:41 PM Patrick O'Meara, Manager of Project Management (330)966-5725 patrick.o'meara@eurofinset.com

Designee for Kris Brooks, Project Manager II (330)966-9790 Kris.Brooks@Eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Visit us at: www.eurofinsus.com/Env

Review your project results through

LINKS

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Method Summary	5
Sample Summary	6
Detection Summary	7
Client Sample Results	8
QC Sample Results	13
QC Association Summary	15
Lab Chronicle	16
Certification Summary	17
Chain of Custody	18

Qualifiers

RER

RL RPD

TEF

TEQ

TNTC

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Quaimers		3
General Che	mistry	
Qualifier	Qualifier Description	4
U	Indicates the analyte was analyzed for but not detected.	
Glossary		5
Abbreviation	These commonly used abbreviations may or may not be present in this report.	6
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	0
CNF	Contains No Free Liquid	0
DER	Duplicate Error Ratio (normalized absolute difference)	0
Dil Fac	Dilution Factor	9
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	13
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	

Job ID: 240-152019-1

Laboratory: Eurofins TestAmerica, Canton

Narrative

Job Narrative 240-152019-1

Comments

No additional comments.

Receipt

The samples were received on 6/29/2021 @ 10:30 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 1.9° C.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Method Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE RRLF

Method	Method Description	Protocol	Laboratory
9056A	Anions, Ion Chromatography	SW846	TAL CAN
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL CAN

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Sample Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE RRLF

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset
240-152019-1	MW-16-04_20210625	Water	06/25/21 12:55	06/29/21 10:30	
240-152019-2	MW-16-05_20210628	Water	06/28/21 11:20	06/29/21 10:30	
240-152019-3	DUP-01	Water	06/25/21 00:00	06/29/21 10:30	
240-152019-4	DUP-02	Water	06/28/21 00:00	06/29/21 10:30	
240-152019-5	EB-01	Water	06/24/21 08:45	06/29/21 10:30	

Detection Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE RRLF

Job ID: 240-152019-1

Client: TRC Environmental C Project/Site: CCR DTE RRLF	•		Job ID: 240-152019					
Client Sample ID: MW-	16-04_20210	625			Lab Sa	mple ID: 24	0-152019-1	
Analyte	Result	Qualifier	RL	Unit	Dil Fac	D Method	Prep Type	
Total Dissolved Solids	5400		50	mg/L	1	SM 2540C	Total/NA	
Client Sample ID: MW-	16-05_202100	628			Lab Sa	mple ID: 24	0-152019-2	
Analyte	Result	Qualifier	RL	Unit	Dil Fac	D Method	Prep Type	
Sulfate	7.5		5.0	mg/L	5	9056A	Total/NA	
Client Sample ID: DUP	-01				Lab Sa	mple ID: 24	0-152019-3	
Analyte	Result	Qualifier	RL	Unit	Dil Fac	D Method	Ргер Туре	
Total Dissolved Solids	5800		50	mg/L	1	SM 2540C	Total/NA	
Client Sample ID: DUP	-02				Lab Sa	mple ID: 24	0-152019-4	
Analyte	Result	Qualifier	RL	Unit	Dil Fac	D Method	Ргер Туре	
Sulfate	7.3		5.0	mg/L	5	9056A	Total/NA	
Client Sample ID: EB-0)1				Lab Sa	mple ID: 24	0-152019-5	
Analyte	Result	Qualifier	RL	Unit	Dil Fac	D Method	Prep Type	
Total Dissolved Solids	17		10	mg/L	1	SM 2540C	Total/NA	

This Detection Summary does not include radiochemical test results.

Client: TRC Environmental Corporation. Project/Site: CCR DTE RRLF Job ID: 240-152019-1

Client Sample ID: MW-1 Date Collected: 06/25/21 12:				La	b Sample	ID: 240-152 Matrix	2019-1 : Water
Date Received: 06/29/21 10:3	80						
General Chemistry							
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids		50	mg/L			07/01/21 08:03	1

Client: TRC Environmental Corporation. Project/Site: CCR DTE RRLF Job ID: 240-152019-1

Client Sample ID: MW-1 Date Collected: 06/28/21 11:: Date Received: 06/29/21 10::	20			La	b Sample	D: 240-152	2019-2 Water
General Chemistry Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	7.5	5.0	mg/L			07/02/21 08:10	5

Client: TRC Environmental Corp Project/Site: CCR DTE RRLF								
Client Sample ID: DUP-01 Date Collected: 06/25/21 00:00 Date Received: 06/29/21 10:30)				La	b Sample	D: 240-152 Matrix	2019-3 : Water
General Chemistry Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	5800		50	mg/L		-	07/01/21 08:03	1

Client: TRC Environmental Corporation Project/Site: CCR DTE RRLF	n.	•	Job ID: 240-15				
Client Sample ID: DUP-02 Date Collected: 06/28/21 00:00 Date Received: 06/29/21 10:30				Lab Sample ID: 240-152019-4 Matrix: Water			
General Chemistry Analyte Sulfate	Result Qualifier	RL 5.0	Unit mg/L	DPreparedAnalyzedDil Fac07/02/21 08:325			

Client: TRC Environmental Cor Project/Site: CCR DTE RRLF	poration.		•				Job ID: 240-15	52019-1
Client Sample ID: EB-01					La	b Sample	ID: 240-152	2019-5
Date Collected: 06/24/21 08:4	5						Matrix	: Water
Date Received: 06/29/21 10:3	0							
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	1.0	U	1.0	mg/L			07/02/21 17:56	1
Total Dissolved Solids	17		10	mg/L			07/01/21 08:03	1

Total Dissolved Solids

Job ID: 240-152019-1

Method: 9056A - Anions, Ion Chromatography Lab Sample ID: MB 240-492925/63 Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA Analysis Batch: 492925 MB MB **Result Qualifier** RL Unit Analyzed Dil Fac Analyte D Prepared Sulfate 1.0 07/02/21 02:23 1.0 U mg/L 1 Lab Sample ID: LCS 240-492925/64 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA Analysis Batch: 492925 Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Sulfate 50.0 50.8 90 - 110 mg/L 102 Lab Sample ID: MB 240-493127/3 **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA Analysis Batch: 493127 MB MB **Result Qualifier** RL Unit Analyte D Prepared Analyzed Dil Fac Sulfate 1.0 U 1.0 mg/L 07/01/21 09:18 Lab Sample ID: LCS 240-493127/4 **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA** Analysis Batch: 493127 Spike LCS LCS %Rec. Added Analyte **Result Qualifier** Unit %Rec Limits D Sulfate 50.0 50.3 90 - 110 mg/L 101 Lab Sample ID: MB 240-493348/3 **Client Sample ID: Method Blank** Matrix: Water Prep Type: Total/NA Analysis Batch: 493348 MB MB Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Sulfate 1.0 U 1.0 mg/L 07/02/21 10:20 Lab Sample ID: LCS 240-493348/4 **Client Sample ID: Lab Control Sample** Matrix: Water Prep Type: Total/NA Analysis Batch: 493348 Spike LCS LCS %Rec. Analyte Added **Result Qualifier** %Rec Limits Unit D 50.8 Sulfate 50.0 mg/L 102 90 - 110 Method: SM 2540C - Solids, Total Dissolved (TDS) Lab Sample ID: MB 240-493192/1 **Client Sample ID: Method Blank** Matrix: Water Prep Type: Total/NA Analysis Batch: 493192 MB MB Analvte **Result Qualifier** RL Unit D Prepared Analyzed Dil Fac

Eurofins TestAmerica, Canton

07/01/21 08:03

10

mg/L

10 U

Job ID: 240-152019-1

Method: SM 2540C - Solids, Total Dissolved (TDS) (Continued)

Lab Sample ID: LCS 240 Matrix: Water Analysis Batch: 493192						Clie	nt San	nple ID	: Lab Control S Prep Type: To		
			Spike	LCS	LCS				%Rec.		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Total Dissolved Solids			347	356		mg/L		103	80 - 120		
Lab Sample ID: 240-152 Matrix: Water Analysis Batch: 493192						Clier	nt Sam	ple ID:	MW-16-04_202 Prep Type: To		
	Sample	Sample		DU	DU					R	RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	D		RPD	Li	.imit
Total Dissolved Solids	5400			5260		mg/L					20

QC Association Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE RRLF

General Chemistry

Analysis Batch: 492925

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-152019-2	MW-16-05_20210628	Total/NA	Water	9056A	
240-152019-4	DUP-02	Total/NA	Water	9056A	
MB 240-492925/63	Method Blank	Total/NA	Water	9056A	
LCS 240-492925/64	Lab Control Sample	Total/NA	Water	9056A	
Analysis Batch: 493	3127				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 240-493127/3	Method Blank	Total/NA	Water	9056A	
LCS 240-493127/4	Lab Control Sample	Total/NA	Water	9056A	
Analysis Batch: 493	3192				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-152019-1	MW-16-04_20210625	Total/NA	Water	SM 2540C	
240-152019-3	DUP-01	Total/NA	Water	SM 2540C	
240-152019-5	EB-01	Total/NA	Water	SM 2540C	
MB 240-493192/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 240-493192/2	Lab Control Sample	Total/NA	Water	SM 2540C	
240-152019-1 DU	MW-16-04_20210625	Total/NA	Water	SM 2540C	
Analysis Batch: 493	3348				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-152019-5	EB-01	Total/NA	Water	9056A	
MB 240-493348/3	Method Blank	Total/NA	Water	9056A	
LCS 240-493348/4	Lab Control Sample	Total/NA	Water	9056A	

Job ID: 240-152019-1

Client Sam Date Collecte Date Receive	d: 06/25/21 1		0625				Lab Sa	mple ID:	240-152019-1 Matrix: Water
_	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	SM 2540C		1	493192	07/01/21 08:03	AJ	TAL CAN	
Client Sam	ple ID: MW	-16-05_2021	0628				Lab Sa	mple ID:	240-152019-2
Date Collecte	d: 06/28/21 1	1:20							Matrix: Water
Date Receive	d: 06/29/21 1	0:30							
_	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	9056A		5	492925	07/02/21 08:10	JMB	TAL CAN	
Client Sam Date Collecte Date Receive	d: 06/25/21 0	0:00					Lab Sa	mple ID:	240-152019-3 Matrix: Wate
_	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	SM 2540C		1	493192	07/01/21 08:03	AJ	TAL CAN	
Client Sam	ple ID: DUI	P-02					Lab Sa	mple ID:	240-152019-4
Date Collecte Date Receive									Matrix: Water
_	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	9056A		5	492925	07/02/21 08:32	JMB	TAL CAN	
Client Sam Date Collecte Date Receive	d: 06/24/21 0	8:45					Lab Sa	mple ID:	240-152019-5 Matrix: Water
_	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	9056A		1	493348	07/02/21 17:56	JMB	TAL CAN	
Total/NA	Analysis	SM 2540C		1	493192	07/01/21 08:03	AJ	TAL CAN	
-									

Laboratory References:

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Accreditation/Certification Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE RRLF

Job ID: 240-152019-1

12

Laboratory: Eurofins TestAmerica, Canton

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
California	State	2927	02-23-22
Connecticut	State	PH-0590	12-31-21
Florida	NELAP	E87225	06-30-22
Georgia	State	4062	02-23-22
Illinois	NELAP	200004	07-31-21
Iowa	State	421	06-01-21 *
Kansas	NELAP	E-10336	04-30-22
Kentucky (UST)	State	112225	02-23-22
Kentucky (WW)	State	KY98016	12-31-21
<i>d</i> innesota	NELAP	OH00048	12-31-21
/linnesota (Petrofund)	State	3506	08-01-21
lew Jersey	NELAP	OH001	06-30-22
New York	NELAP	10975	03-31-22
Dhio VAP	State	CL0024	12-21-23
Oregon	NELAP	4062	02-23-22
Pennsylvania	NELAP	68-00340	08-31-21
Texas	NELAP	T104704517-18-10	08-31-21
JSDA	US Federal Programs	P330-18-00281	09-17-21
/irginia	NELAP	010101	09-14-21
Vashington	State	C971	01-12-22
West Virginia DEP	State	210	12-31-21

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

Address Address <t< th=""><th>Chain of Custody Number</th></t<>	Chain of Custody Number
New State 20 Code State Late Contact Late Contact Analysis Gates for more space for more sp	
Learnin (State) Containers & Learning (Location (State)) Containers & Matrix Containers & Discontainers & Matrix Containers & Discontainers & Matrix 20 10-1(LG1 1 Antix Containers & Discontainers & Discontainers & Matrix Containers & Discontainers & Discontainers & Matrix Containers & Discontainers & D	
Processeratives Matrix Containers & Presentatives Matrix Containers & Presentatives Matrix 30 VLAUG31 Date Time 7 1 1 1 1 1 M1 Torzi doc 3 Lov1G431 Date Time 2	Snarial Instructions/
Re I.D. No. and Description Date Time Re No. and Description obs. sample may be combined on one line) Date Time R. No. and Description obs. 2021O6225 Lo. 15. 21 11/20 1 1 K obs. 2021O6225 Lo. 15. 21 11/20 1 1 K obs. 2021O6225 Lo. 15. 21 11/20 1 1 K obs. 2021O6225 Lo. 15. 21 1 1 K K obs. 2021O6225 Lo. 15. 21 1 1 K K obs. 2021O6225 Lo. 18. 21 1 1 K K obs. 2021O6225 Lo. 18. 21 1 1 K K obs. 2021O6225 Lo. 18. 21 1 1 K K obs. 2021O6225 Lo. 28. 21 1 1 K K obs. 2021O626 Lo. 28. 21 1 1 K K obs. 2021O627 Lo. 28. 21 1 1 K K obs. 2021O627 Lo. 28. 21 1 1 K K obs. 2021O626 Lo. 28. 21 1 1 1 K obs. 202010 Lo. 202018 Linnom 240-152018 Linno <td>Conditions of Receipt</td>	Conditions of Receipt
H- 2021GG2S (c.15.21 1255 1 1 X X 65.2021GG2C (c.15.21 1255 1 1 1 X 1 (c.25.21 1252 1 1 1 X 1 (c.25.21 (c.25.21 1 1 X 1 (c.25.21 1 1 1 1 1 (c.26.21 1 1 1 1	
O.S2021O62Č 6.12.21 11.20 1 1 1 X Z Z <td></td>	
N 6. (35.21 1 1 1 1 22 6. (35.21 6. (35.21 1 1 1 1 1 6. (38.2) 6. (35.21 1 1 1 1 1 6. (38.2) 6. (38.2) 1 1 1 1 1 6. (38.2) 6. (38.2) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
22 6.78.21 6.78.21 1 1 1 X X 1 6.74.21 0645 1 1 1 X 1 6.74.21 0645 1 1 1 1 6.74.21 0645 1 1 1 1 6.76.21 0.661 0.50004 0.661 0.6600 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Image: State of the state o	
Image: Second	
Identification 240-152019 Chain of Custody Identification Eamable Interviewed Sample Disposal Image Image Image	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
Bequired Requirements (Specify) a Hours 7 Days 21 Days 21 Days A A Hours 7 Days 21 Days A Bate 1. Received By A Date 1. A Stocky	(A fee may be assessed if samples are retained
ate 1 Time 1. Received B 628.21 1340 TA	
Date Time 2 Bareliad B	Date Time
	Date Time Date Time
3. Reinquising By Hill. Alloy Hill.	6- 69-2) 1030

Eurofins TestAmerica Canton Sample Receipt Form/Narrative	Login # :
Canton Facility	Cooler unpacked by:
Client TRCSite Name	- /
Cooler Received on $6 - 29 - 21$ Opened on $6 - 29 - 21$	Trent
FedEx: 1 st Grd (UPS FAS Clipper Client Drop Off TestAmerica Courier	Other
Receipt After-hours: Drop-off Date/TimeStorage Location TestAmerica Cooler #Foam Box Client Cooler Box Other	
COOLANT: Wet lee Blue Ice Dry Ice Water None	and the second sec
1. Cooler temperature upon receipt	
IR GUN# IR-11 (CF +0.1 °C) Observed Cooler Temp. 1.8 °C Corrected Cooler	
IR GUN #IR-12 (CF +0.2°C) Observed Cooler Temp°C Corrected Cooler	
	P No Tests that are not
	NO NA checked for pH by
-Were tamper/custody seals on the bottle(s) or bottle kits (LLHg/MeHg)? Yes -Were tamper/custody seals intact and uncompromised?	s No NA
	s No VOAs
4. Did custody papers accompany the sample(s)?	No Oil and Grease
5. Were the custody papers relinquished & signed in the appropriate place?	No TOC
6. Was/were the person(s) who collected the samples clearly identified on the COC?	No
	No
8. Could all bottle labels (ID/Date/Time) be reconciled with the COC?	No
9. For each sample, does the COC specify preservatives $(Y \otimes)$, # of containers (\otimes) , and sa	No
10. Were correct bottle(s) used for the test(s) indicated? 11. Sufficient quantity received to perform indicated analyses?	No
	N
If yes, Questions 13-17 have been checked at the originating laboratory.	
13. Were all preserved sample(s) at the correct pH upon receipt?	No NA pH Strip Lot# HC022887
	s No A
	s (No
17. Was a LL fig of Me fig tilp blank present? 16.	
Contacted PM Date by via Verbal V	voice Mail Other
Concerning	
D	
18. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES	Samples processed by:
19. SAMPLE CONDITION	
Sample(s) were received after the recommended hold	ing time had expired.
Sample(s) were received	l in a broken container.
Sample(s) were received with bubble >6 mm i	in diameter. (Notify PM)
20. SAMPLE PRESERVATION	
Sample(s) were fur	rther preserved in the laboratory.
Sample(s)	
VOA Sample Preservation - Date/Time VOAs Frozen:	

i.

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Canton 4101 Shuffel Street NW North Canton, OH 44720 Tel: (330)497-9396

Laboratory Job ID: 240-158349-1

Client Project/Site: CCR DTE Range Road Landfill

For:

TRC Environmental Corporation. 1540 Eisenhower Place Ann Arbor, Michigan 48108-7080

Attn: Mr. Vincent Buening

Brooks

Authorized for release by: 11/3/2021 6:23:14 PM

Kris Brooks, Project Manager II (330)966-9790 Kris.Brooks@Eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

LINKS **Review your project** results through Total Access **Have a Question?** Ask-The Expert Visit us at: www.eurofinsus.com/Env

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Method Summary	5
Sample Summary	6
Detection Summary	7
Client Sample Results	9
QC Sample Results	18
QC Association Summary	20
Lab Chronicle	22
Certification Summary	25
Chain of Custody	26

Client: TRC Environmental Corporation. Project/Site: CCR DTE Range Road Landfill

3

Qualifiers

Metals		
Qualifier	Qualifier Description	
	Indicates the analyte was analyzed for but not detected.	
Conorol Cho		5
General Che Qualifier	Qualifier Description	
	Indicates the analyte was analyzed for but not detected.	6
	······································	
Glossary		7
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	8
%R	Percent Recovery	U
CFL	Contains Free Liquid	Q
CFU	Colony Forming Unit	3
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
TNTC	Too Numerous To Count	

Job ID: 240-158349-1

Laboratory: Eurofins TestAmerica, Canton

Narrative

Job Narrative 240-158349-1

Comments

No additional comments.

Receipt

The samples were received on 10/20/2021 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 0.6° C.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

Method 9056A: The following samples were diluted due to the nature of the sample matrix: MW-16-03 (240-158349-4) and MW-16-04 (240-158349-5). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Method Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE Range Road Landfill

Method	Method Description	Protocol	Laboratory
6010B	Metals (ICP)	SW846	TAL CAN
6020	Metals (ICP/MS)	SW846	TAL CAN
9056A	Anions, Ion Chromatography	SW846	TAL CAN
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL CAN
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	TAL CAN

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Sample Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE Range Road Landfill

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-158349-1	MW-16-01	Water	10/18/21 11:44	10/20/21 08:00
240-158349-2	DUP-01	Water	10/18/21 00:00	10/20/21 08:00
240-158349-3	MW-16-02	Water	10/18/21 12:32	10/20/21 08:00
240-158349-4	MW-16-03	Water	10/18/21 13:13	10/20/21 08:00
240-158349-5	MW-16-04	Water	10/18/21 10:26	10/20/21 08:00
240-158349-6	MW-16-05	Water	10/18/21 15:01	10/20/21 08:00
240-158349-7	MW-16-06	Water	10/18/21 13:54	10/20/21 08:00
240-158349-8	MW-16-07	Water	10/18/21 09:34	10/20/21 08:00
240-158349-9	EB-01	Water	10/18/21 10:50	10/20/21 08:00

Job ID: 240-158349-1

Detection Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE Range Road Landfill

Client Sample ID: MW-16-01

5

6 7

Lab Sample ID: 240-158349-1

Lab Sample ID: 240-158349-2

Lab Sample ID: 240-158349-3

Lab Sample ID: 240-158349-4

Analyte	Result Qualifier	RL	Unit	Dil Fac	D Method	Prep Type
Boron	510	100	ug/L	1	6010B	Total
						Recoverable
Calcium	77000	1000	ug/L	1	6020	Total
						Recoverable
Iron	1400	100	ug/L	1	6020	Total
						Recoverable
Chloride	550	10	mg/L	10	9056A	Total/NA
Fluoride	0.85	0.050	mg/L	1	9056A	Total/NA
Sulfate	41	1.0	mg/L	1	9056A	Total/NA
Total Dissolved Solids	1200	20	mg/L	1	SM 2540C	Total/NA

Client Sample ID: DUP-01

Analyte	Result Qualifier	RL	Unit	Dil Fac	Method	Prep Туре
Boron	480	100	ug/L	1	6010B	Total
						Recoverable
Calcium	77000	1000	ug/L	1	6020	Total
						Recoverable
Iron	1400	100	ug/L	1	6020	Total
						Recoverable
Chloride	710	10	mg/L	10	9056A	Total/NA
Fluoride	0.85	0.050	mg/L	1	9056A	Total/NA
Sulfate	41	1.0	mg/L	1	9056A	Total/NA
Total Dissolved Solids	1400	20	mg/L	1	SM 2540C	Total/NA

Client Sample ID: MW-16-02

Analyte Result Qualifier Unit Method RL Dil Fac D Prep Type Boron 100 ug/L 6010B 920 Total 1 Recoverable Calcium 21000 1000 ug/L 6020 1 Total Recoverable Iron 840 100 6020 ug/L 1 Total Recoverable 9056A Chloride 660 10 mg/L 10 Total/NA Fluoride 2.0 0.050 mg/L 1 9056A Total/NA Sulfate 9056A Total/NA 1.7 1.0 mg/L 1 **Total Dissolved Solids** 1100 20 mg/L 1 SM 2540C Total/NA

Client Sample ID: MW-16-03

Analyte	Result Qua	lifier RL	Unit	Dil Fac	D Method	Р гер Туре
Boron	1100	100	ug/L	1		Total
						Recoverable
Calcium	19000	1000	ug/L	1	6020	Total
						Recoverable
Iron	550	100	ug/L	1	6020	Total
						Recoverable
Chloride	520	5.0	mg/L	5	9056A	Total/NA
Fluoride	2.2	0.050	mg/L	1	9056A	Total/NA
Total Dissolved Solids	1000	20	mg/L	1	SM 2540C	Total/NA

This Detection Summary does not include radiochemical test results.

Detection Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE Range Road Landfill

Client Sample ID: MW-16-04

Lab Sample ID: 240-158349-5

Analyte	Result Qualifier	RL	Unit	Dil Fac	D Method	Prep Type
Boron	880	100	ug/L	1	6010B	Total
						Recoverable
Calcium	63000	1000	ug/L	1	6020	Total
						Recoverable
Iron	850	100	ug/L	1	6020	Total
						Recoverable
Chloride	3200	25	mg/L	25	9056A	Total/NA
Fluoride	1.5	0.25	mg/L	5	9056A	Total/NA
Total Dissolved Solids	5100	50	mg/L	1	SM 2540C	Total/NA
Client Sample ID: MW-	ient Sample ID: MW-16-05					0-158349-6

Client Sample ID: MW-16-05

Analyte	Result Qualifier	RL	Unit	Dil Fac D	Method	Prep Type
Boron	1200	100	ug/L	1	6010B	Total
						Recoverable
Calcium	17000	1000	ug/L	1	6020	Total
						Recoverable
Iron	210	100	ug/L	1	6020	Total
						Recoverable
Chloride	560	10	mg/L	10	9056A	Total/NA
Fluoride	2.0	0.050	mg/L	1	9056A	Total/NA
Sulfate	3.0	1.0	mg/L	1	9056A	Total/NA
Total Dissolved Solids	1100	20	mg/L	1	SM 2540C	Total/NA

Client Sample ID: MW-16-06

Analyte	Result Qualifier	RL	Unit	Dil Fac	D Method	Ргер Туре
Boron	900	100	ug/L	1	6010B	Total
						Recoverable
Calcium	46000	1000	ug/L	1	6020	Total
						Recoverable
Iron	770	100	ug/L	1	6020	Total
						Recoverable
Chloride	490	10	mg/L	10	9056A	Total/NA
Fluoride	1.4	0.050	mg/L	1	9056A	Total/NA
Sulfate	150	1.0	mg/L	1	9056A	Total/NA
Total Dissolved Solids	1200	20	mg/L	1	SM 2540C	Total/NA

Client Sample ID: MW-16-07

Lab Sample ID: 240-158349-8

Lab Sample ID: 240-158349-7

Analyte	Result Qualifier	RL	Unit	Dil Fac	Method	Prep Type
Boron	880	100	ug/L	1	6010B	Total
						Recoverable
Calcium	45000	1000	ug/L	1	6020	Total
						Recoverable
Iron	2300	100	ug/L	1	6020	Total
						Recoverable
Chloride	350	5.0	mg/L	5	9056A	Total/NA
Fluoride	1.3	0.050	mg/L	1	9056A	Total/NA
Sulfate	3.8	1.0	mg/L	1	9056A	Total/NA
Total Dissolved Solids	670	10	mg/L	1	SM 2540C	Total/NA

Client Sample ID: EB-01

No Detections.

This Detection Summary does not include radiochemical test results.

Lab Sample ID: 240-158349-9

Client: TRC Environmental Corporation. Project/Site: CCR DTE Range Road Landfill

Client Sample ID: MW-16-01

Job ID: 240-158349-1

Lab Sample ID: 240-158349-1

Matrix: Water

Dil Fac

Dil Fac

1

1

8

11:44)8:00						Matrix
	verable					
Result	Qualifier	RL	Unit	D	Prepared	Analyzed
510		100	ug/L		10/21/21 14:00	10/22/21 22:51
CP/MS) - Total Re	coverable					
Result	Qualifier	RL	Unit	D	Prepared	Analyzed
77000		1000	ug/L		10/21/21 14:00	10/25/21 20:22
1400		100	ug/L		10/21/21 14:00	10/25/21 20:22
)	08:00 (ICP) - Total Reco Result 510 CP/MS) - Total Re Result 77000	(ICP) - Total Recoverable Result Qualifier 510 CP/MS) - Total Recoverable Result Qualifier 77000	(ICP) - Total Recoverable Result Qualifier 510 100 CP/MS) - Total Recoverable Result Qualifier Result Qualifier Result Qualifier Result Qualifier Result Qualifier Result Qualifier 1000 1000	D8:00 (ICP) - Total Recoverable Result Qualifier RL Unit 510 100 ug/L CP/MS) - Total Recoverable Result Qualifier RL Unit 77000 1000 ug/L	D8:00 (ICP) - Total Recoverable Result Qualifier RL Unit D 510 100 100 ug/L D CP/MS) - Total Recoverable Result Qualifier RL Unit D 77000 1000 ug/L D	D8:00 (ICP) - Total Recoverable Result Qualifier RL Unit D Prepared 510 100 100 10/21/21 14:00 CP/MS) - Total Recoverable Result Qualifier RL Unit D Prepared 77000 1000 1000 10/21/21 14:00

Iron	1400		100	ug/L		10/21/21 14:00	10/25/21 20:22	1
General Chemistry Analyte	Rosult	Qualifier	RL	Unit	D	Prepared	Analvzed	Dil Fac
					<u>_</u> .	Tiepareu		
Chloride	550		10	mg/L			11/02/21 06:23	10
Fluoride	0.85		0.050	mg/L			11/02/21 06:03	1
Sulfate	41		1.0	mg/L			11/02/21 06:03	1
Total Dissolved Solids	1200		20	mg/L			10/22/21 07:57	1

Client: TRC Environmental Corporation. Project/Site: CCR DTE Range Road Landfill Job ID: 240-158349-1

Client Sample ID: DUP-01 Date Collected: 10/18/21 00:00 Date Received: 10/20/21 08:00

Lab Sample ID: 240-158349-2 Matrix: Water

Method: 6010B - Metals (IC	P) - Total Reco	overable						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	480		100	ug/L		10/21/21 14:00	10/22/21 22:56	1
Method: 6020 - Metals (ICP)	/MS) - Total Re	coverable						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	77000		1000	ug/L		10/21/21 14:00	10/25/21 20:25	1
Iron	1400		100	ug/L		10/21/21 14:00	10/25/21 20:25	1
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	710		10	mg/L			11/02/21 07:04	10
Fluoride	0.85		0.050	mg/L			11/02/21 06:43	1
Sulfate	41		1.0	mg/L			11/02/21 06:43	1
Total Dissolved Solids	1400		20	mg/L			10/25/21 08:20	1
—								

RL

100

RL

1000

100

RL

10

1.0

20

0.050

Unit

ug/L

Unit

ug/L

ug/L

Unit

mg/L

mg/L

mg/L

mg/L

D

D

D

Prepared

Prepared

10/21/21 14:00

Prepared

Client: TRC Environmental Corporation. Project/Site: CCR DTE Range Road Landfill

Analyte

Boron

Analyte

Calcium

Analyte

Chloride

Fluoride

Sulfate

General Chemistry

Total Dissolved Solids

Iron

Job ID: 240-158349-1

Client Sample ID: MW-16-02 Date Collected: 10/18/21 12:32 Date Received: 10/20/21 08:00

Method: 6010B - Metals (ICP) - Total Recoverable

Method: 6020 - Metals (ICP/MS) - Total Recoverable

Result Qualifier

Result Qualifier

Result Qualifier

920

21000

840

660

2.0

1.7

1100

Lab Sample ID: 240-158349-3 **Matrix: Water**

10/21/21 14:00 10/22/21 23:00

10/21/21 14:00 10/25/21 20:27

Analyzed

Analyzed

10/25/21 20:27

Analyzed

11/02/21 08:24

11/02/21 08:04

11/02/21 08:04

10/25/21 08:20

Dil Fac

Dil Fac

Dil Fac

1

1

1

10

1

1

1

4 5 7 8 9 10 11 12		
8 9 10 11		
8 9 10 11		5
8 9 10 11		
9 1(11		
10		8
	l	9
12 13		
13		

11/3/2021

Client: TRC Environmental Corporation. Project/Site: CCR DTE Range Road Landfill

Job ID: 240-158349-1

Client Sample ID: MW-16-03 Date Collected: 10/18/21 13:13 Date Received: 10/20/21 08:00

Lab Sample ID: 240-158349-4 Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	1100		100	ug/L		10/21/21 14:00	10/22/21 23:05	1
Method: 6020 - Metals (ICP	/MS) - Total Re	coverable						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	19000		1000	ug/L		10/21/21 14:00	10/25/21 20:30	1
Iron	550		100	ug/L		10/21/21 14:00	10/25/21 20:30	1
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	520		5.0	mg/L			11/02/21 09:04	5
Fluoride	2.2		0.050	mg/L			11/02/21 08:44	1
	5.0	U	5.0	mg/L			11/02/21 09:04	5
Sulfate	0.0						10/25/21 08:20	

Client: TRC Environmental Corporation. Project/Site: CCR DTE Range Road Landfill Job ID: 240-158349-1

Client Sample ID: MW-16-04 Date Collected: 10/18/21 10:26 Date Received: 10/20/21 08:00

Lab Sample ID: 240-158349-5 Matrix: Water

5 6

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	880		100	ug/L		10/21/21 14:00	10/22/21 23:09	1
- Method: 6020 - Metals (ICP	/MS) - Total Re	coverable						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	63000		1000	ug/L		10/21/21 14:00	10/25/21 20:32	1
Iron	850		100	ug/L		10/21/21 14:00	10/25/21 20:32	1
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	3200		25	mg/L			11/02/21 09:45	25
Fluoride	1.5		0.25	mg/L			11/02/21 09:24	5
Sulfate	5.0	U	5.0	mg/L			11/02/21 09:24	5
Total Dissolved Solids	5100		50	mg/L			10/25/21 08:20	

Client: TRC Environmental Corporation. Project/Site: CCR DTE Range Road Landfill Job ID: 240-158349-1

Client Sample ID: MW-16-05 Date Collected: 10/18/21 15:01 Date Received: 10/20/21 08:00

Lab Sample ID: 240-158349-6 Matrix: Water

8

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	1200		100	ug/L		10/21/21 14:00	10/22/21 23:22	1
Method: 6020 - Metals (ICP	/MS) - Total Re	coverable						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	17000		1000	ug/L		10/21/21 14:00	10/25/21 20:35	1
Iron	210		100	ug/L		10/21/21 14:00	10/25/21 20:35	1
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	560		10	mg/L			11/02/21 11:05	10
Fluoride	2.0		0.050	mg/L			11/02/21 10:45	1
Sulfate	3.0		1.0	mg/L			11/02/21 10:45	1
Total Dissolved Solids	1100		20	mg/L			10/25/21 08:20	

Client: TRC Environmental Corporation. Project/Site: CCR DTE Range Road Landfill Job ID: 240-158349-1

Client Sample ID: MW-16-06 Date Collected: 10/18/21 13:54 Date Received: 10/20/21 08:00

Lab Sample ID: 240-158349-7 Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	900		100	ug/L		10/21/21 14:00	10/22/21 23:27	1
Method: 6020 - Metals (ICP)	/MS) - Total Re	coverable						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	46000		1000	ug/L		10/21/21 14:00	10/25/21 20:42	1
Iron	770		100	ug/L		10/21/21 14:00	10/25/21 20:42	1
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	490		10	mg/L			11/02/21 12:25	10
Fluoride	1.4		0.050	mg/L			11/02/21 12:05	1
Sulfate	150		1.0	mg/L			11/02/21 12:05	1
Total Dissolved Solids	1200		20	mg/L			10/25/21 08:20	1

Client: TRC Environmental Corporation. Project/Site: CCR DTE Range Road Landfill Job ID: 240-158349-1

Client Sample ID: MW-16-07 Date Collected: 10/18/21 09:34 Date Received: 10/20/21 08:00

Lab Sample ID: 240-158349-8 Matrix: Water

8

Method: 6010B - Metals (IC	P) - Total Reco	overable						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	880		100	ug/L		10/21/21 14:00	10/22/21 23:31	1
Method: 6020 - Metals (ICP)	/MS) - Total Re	coverable						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	45000		1000	ug/L		10/21/21 14:00	10/25/21 20:45	1
Iron	2300		100	ug/L		10/21/21 14:00	10/25/21 20:45	1
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	350		5.0	mg/L			11/02/21 13:05	5
Fluoride	1.3		0.050	mg/L			11/02/21 12:45	1
Sulfate	3.8		1.0	mg/L			11/02/21 12:45	1
Total Dissolved Solids	670		10	mg/L			10/25/21 08:20	1
—								

Client: TRC Environmental Corporation. Project/Site: CCR DTE Range Road Landfill Job ID: 240-158349-1

Client Sample ID: EB-01 Date Collected: 10/18/21 10:50 Date Received: 10/20/21 08:00

Lab Sample ID: 240-158349-9 Matrix: Water

5

Method: 6010B - Metals (IC	CP) - Total Reco	verable						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	100	U	100	ug/L		10/21/21 14:00	10/22/21 23:36	1
Method: 6020 - Metals (ICI	P/MS) - Total Re	coverable						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	1000	U	1000	ug/L		10/21/21 14:00	10/25/21 20:47	1
Iron	100	U	100	ug/L		10/21/21 14:00	10/25/21 20:47	1
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1.0	U	1.0	mg/L			11/02/21 13:26	1
Fluoride	0.050	U	0.050	mg/L			11/02/21 13:26	1
Sulfate	1.0	U	1.0	mg/L			11/02/21 13:26	1
Total Dissolved Solids	10	U	10	mg/L			10/25/21 08:20	1

QC Sample Results

Sulfate

Job ID: 240-158349-1

Vethod Vethod Vethod Vethod Vethod Vethod Vethod Vethod Vethod Vethod Vethod Vethod Vethod Vethod Vethod Vethod	509: Dil Sam vera 509: d Bla vera
Batch: { yzed 1 21:51 pntrol S Recov Batch: { Method Recov Batch: { yzed	509: Dil Sam vera 509: d Bla vera
Method Batch: { Satch: { Method Batch: { Satch: {	Sam vera 509: d Bla vera
Method Batch: { Satch: { Method Batch: { Satch: {	Sam vera 509: d Bla vera
Method Batch: { Method Batch: { yzed	vera 509:
I Recov Batch: { Method I Recov Batch: { yzed	vera 509:
Method I Recov Jatch: {	5093 d Bla vera
Method I Recov Batch: { yzed	d Bla
Recov Batch: {	vera
Batch: {	
yzed	509 :
-	
-	
1 19:45	Dil
1 19:45	
ontrol S	Sam
Recov	vera
Batch:	509
Nethod	d Bla
ype: To	otal
-	Dil
1 19:59	
Nethod	
ype: To	otal
yzed	Dil
yzed 1 10:05 1 10:05	Dil
	Methor ype: T ype: T 1 19:59 1 19:59 1 19:59 1 19:59 Methor

Eurofins TestAmerica, Canton

11/02/21 10:05

1.0

mg/L

1.0 U

Method: 9056A - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 240-51088 Matrix: Water	32/4						Cli	ent Sai	nple ID	: Lab Control Prep Type: 1	
Analysis Batch: 510882											
				Spike		S LCS				%Rec.	
Analyte				Added		t Qualifier	Unit	D	%Rec	Limits	
Chloride				50.0	50.		mg/L		102	90 - 110	
Fluoride				2.50	2.5		mg/L		103	90 - 110	
Sulfate				50.0	51.	4	mg/L		103	90 - 110	
- Lab Sample ID: LCS 240-51088	22/46						Cli	ont Sa	mplo ID	: Lab Control	Sample
Matrix: Water	52/40							ent Sa	inple iD	Prep Type: 1	
Analysis Batch: 510882										пер туре. т	
Analysis Datch. 510002				Spike	I C	S LCS				%Rec.	
Analyte				Added		t Qualifier	Unit	D	%Rec	Limits	
Chloride				50.0	51.	-	mg/L		102	90 - 110	
Fluoride				2.50	2.6		mg/L		104	90 - 110	
Sulfate				50.0	51.		mg/L		103	90 - 110	
-							0				
Method: SM 2540C - Solids	s, Tota	al Dis	ssolve	d (TDS	5)						
Lab Sample ID: MB 240-50941	8/1							Clie	ent Sam	ple ID: Metho	d Blank
Matrix: Water										· Prep Type: 1	
Analysis Batch: 509418											
		MB	МВ								
Analyte	Re	sult (Qualifier		RL	Unit		D P	repared	Analyzed	Dil Fa
Total Dissolved Solids		10	U		10	mg/L				10/22/21 07:57	
Matrix: Water Analysis Batch: 509418										Prep Type: 1	fotal/NA
				Spike		S LCS		_		%Rec.	
Analyte				Added		t Qualifier	Unit	<u>D</u>	%Rec	Limits	
Total Dissolved Solids				500	50	0	mg/L		101	80 - 120	
Lab Sample ID: MB 240-50966	3/1							Clie	ent Sam	ple ID: Metho	d Blani
Matrix: Water										Prep Type: 1	
Analysis Batch: 509663											
·····,····		MB	МВ								
Analyte	Re	sult (Qualifier		RL	Unit		D P	repared	Analyzed	Dil Fa
Total Dissolved Solids		10			10	mg/L			•	10/25/21 08:20	
-											
Lab Sample ID: LCS 240-50966	63/2						Cli	ent Sai	nple ID	: Lab Control	
Matrix: Water										Prep Type: 1	fotal/N/
Analysis Batch: 509663											
				Spike		S LCS				%Rec.	
Analyte				Added		t Qualifier	Unit	D	%Rec	Limits	
Total Dissolved Solids				500	55	Ð	mg/L		112	80 - 120	
Lab Sample ID: 240-158349-7 I	DU								Client	Sample ID: M	W-16-06
										Prep Type: 1	fotal/N/
Matrix: Water											
Matrix: Water Analysis Batch: 509663											
	Sample	Samp	ple		DI	J DU					RPD
	Sample Result					J DU t Qualifier	Unit	D		RP	RPC D Limi

Client: TRC Environmental Corporation. Project/Site: CCR DTE Range Road Landfill

10 11

12

Metals

Prep Batch: 509270

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-158349-1	MW-16-01	Total Recoverable	Water	3005A	
240-158349-2	DUP-01	Total Recoverable	Water	3005A	
240-158349-3	MW-16-02	Total Recoverable	Water	3005A	
240-158349-4	MW-16-03	Total Recoverable	Water	3005A	
240-158349-5	MW-16-04	Total Recoverable	Water	3005A	
240-158349-6	MW-16-05	Total Recoverable	Water	3005A	
240-158349-7	MW-16-06	Total Recoverable	Water	3005A	
240-158349-8	MW-16-07	Total Recoverable	Water	3005A	
240-158349-9	EB-01	Total Recoverable	Water	3005A	
MB 240-509270/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 240-509270/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
LCS 240-509270/3-A	Lab Control Sample	Total Recoverable	Water	3005A	

Analysis Batch: 509522

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
240-158349-1	MW-16-01	Total Recoverable	Water	6010B	509270
240-158349-2	DUP-01	Total Recoverable	Water	6010B	509270
240-158349-3	MW-16-02	Total Recoverable	Water	6010B	509270
240-158349-4	MW-16-03	Total Recoverable	Water	6010B	509270
240-158349-5	MW-16-04	Total Recoverable	Water	6010B	509270
240-158349-6	MW-16-05	Total Recoverable	Water	6010B	509270
240-158349-7	MW-16-06	Total Recoverable	Water	6010B	509270
240-158349-8	MW-16-07	Total Recoverable	Water	6010B	509270
240-158349-9	EB-01	Total Recoverable	Water	6010B	509270
MB 240-509270/1-A	Method Blank	Total Recoverable	Water	6010B	509270
LCS 240-509270/2-A	Lab Control Sample	Total Recoverable	Water	6010B	509270

Analysis Batch: 509863

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
240-158349-1	MW-16-01	Total Recoverable	Water	6020	509270
240-158349-2	DUP-01	Total Recoverable	Water	6020	509270
240-158349-3	MW-16-02	Total Recoverable	Water	6020	509270
240-158349-4	MW-16-03	Total Recoverable	Water	6020	509270
240-158349-5	MW-16-04	Total Recoverable	Water	6020	509270
240-158349-6	MW-16-05	Total Recoverable	Water	6020	509270
240-158349-7	MW-16-06	Total Recoverable	Water	6020	509270
240-158349-8	MW-16-07	Total Recoverable	Water	6020	509270
240-158349-9	EB-01	Total Recoverable	Water	6020	509270
MB 240-509270/1-A	Method Blank	Total Recoverable	Water	6020	509270
LCS 240-509270/3-A	Lab Control Sample	Total Recoverable	Water	6020	509270

General Chemistry

Analysis Batch: 509418

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
240-158349-1	MW-16-01	Total/NA	Water	SM 2540C	
MB 240-509418/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 240-509418/2	Lab Control Sample	Total/NA	Water	SM 2540C	

General Chemistry

Analysis Batch: 509663

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-158349-2	DUP-01	Total/NA	Water	SM 2540C	
240-158349-3	MW-16-02	Total/NA	Water	SM 2540C	
240-158349-4	MW-16-03	Total/NA	Water	SM 2540C	
240-158349-5	MW-16-04	Total/NA	Water	SM 2540C	
240-158349-6	MW-16-05	Total/NA	Water	SM 2540C	
240-158349-7	MW-16-06	Total/NA	Water	SM 2540C	
240-158349-8	MW-16-07	Total/NA	Water	SM 2540C	
240-158349-9	EB-01	Total/NA	Water	SM 2540C	
MB 240-509663/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 240-509663/2	Lab Control Sample	Total/NA	Water	SM 2540C	
240-158349-7 DU	MW-16-06	Total/NA	Water	SM 2540C	

Analysis Batch: 510882

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
240-158349-1	MW-16-01	Total/NA	Water	9056A	
240-158349-1	MW-16-01	Total/NA	Water	9056A	
240-158349-2	DUP-01	Total/NA	Water	9056A	
240-158349-2	DUP-01	Total/NA	Water	9056A	
240-158349-3	MW-16-02	Total/NA	Water	9056A	
240-158349-3	MW-16-02	Total/NA	Water	9056A	
240-158349-4	MW-16-03	Total/NA	Water	9056A	
240-158349-4	MW-16-03	Total/NA	Water	9056A	
240-158349-5	MW-16-04	Total/NA	Water	9056A	
240-158349-5	MW-16-04	Total/NA	Water	9056A	
240-158349-6	MW-16-05	Total/NA	Water	9056A	
240-158349-6	MW-16-05	Total/NA	Water	9056A	
240-158349-7	MW-16-06	Total/NA	Water	9056A	
240-158349-7	MW-16-06	Total/NA	Water	9056A	
240-158349-8	MW-16-07	Total/NA	Water	9056A	
240-158349-8	MW-16-07	Total/NA	Water	9056A	
240-158349-9	EB-01	Total/NA	Water	9056A	
MB 240-510882/3	Method Blank	Total/NA	Water	9056A	
MB 240-510882/45	Method Blank	Total/NA	Water	9056A	
LCS 240-510882/4	Lab Control Sample	Total/NA	Water	9056A	
LCS 240-510882/46	Lab Control Sample	Total/NA	Water	9056A	

Eurofins TestAmerica, Canton

Dilution

Factor

1

1

1

10

1

Run

Batch

Туре

Prep

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Batch

Method

3005A

6010B

3005A

6020

9056A

9056A

SM 2540C

Prep Type

Total/NA

Total/NA

Total/NA

Total Recoverable

Total Recoverable

Total Recoverable

Total Recoverable

Lab Sample ID: 240-158349-1

Matrix: Water

Matrix: Water

Client Sample ID: DUP-01 Date Collected: 10/18/21 00:00 Date Received: 10/20/21 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			509270	10/21/21 14:00	SHB	TAL CAN
Total Recoverable	Analysis	6010B		1	509522	10/22/21 22:56	RKT	TAL CAN
Total Recoverable	Prep	3005A			509270	10/21/21 14:00	SHB	TAL CAN
Total Recoverable	Analysis	6020		1	509863	10/25/21 20:25	AJC	TAL CAN
Total/NA	Analysis	9056A		1	510882	11/02/21 06:43	JWW	TAL CAN
Total/NA	Analysis	9056A		10	510882	11/02/21 07:04	JWW	TAL CAN
Total/NA	Analysis	SM 2540C		1	509663	10/25/21 08:20	AJ	TAL CAN

Client Sample ID: MW-16-02 Date Collected: 10/18/21 12:32 Date Received: 10/20/21 08:00

Lab Sample ID: 240-158349-3 **Matrix: Water**

Lab Sample ID: 240-158349-4

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			509270	10/21/21 14:00	SHB	TAL CAN
Total Recoverable	Analysis	6010B		1	509522	10/22/21 23:00	RKT	TAL CAN
Total Recoverable	Prep	3005A			509270	10/21/21 14:00	SHB	TAL CAN
Total Recoverable	Analysis	6020		1	509863	10/25/21 20:27	AJC	TAL CAN
Total/NA	Analysis	9056A		1	510882	11/02/21 08:04	JWW	TAL CAN
Total/NA	Analysis	9056A		10	510882	11/02/21 08:24	JWW	TAL CAN
Total/NA	Analysis	SM 2540C		1	509663	10/25/21 08:20	AJ	TAL CAN

Client Sample ID: MW-16-03 Date Collected: 10/18/21 13:13 Date Received: 10/20/21 08:00

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			509270	10/21/21 14:00	SHB	TAL CAN
Total Recoverable	Analysis	6010B		1	509522	10/22/21 23:05	RKT	TAL CAN
Total Recoverable	Prep	3005A			509270	10/21/21 14:00	SHB	TAL CAN
Total Recoverable	Analysis	6020		1	509863	10/25/21 20:30	AJC	TAL CAN
Total/NA	Analysis	9056A		1	510882	11/02/21 08:44	JWW	TAL CAN

Eurofins TestAmerica, Canton

Batch

Number

509270

Prepared

or Analyzed

10/21/21 14:00

509522 10/22/21 22:51 RKT

509270 10/21/21 14:00 SHB

509863 10/25/21 20:22 AJC

510882 11/02/21 06:03 JWW

510882 11/02/21 06:23 JWW

509418 10/22/21 07:57 AJ

Analyst

SHB

Lab

TAL CAN

Lab Sample ID: 240-158349-2

Matrix: Water

Lab Sample ID: 240-158349-4

Lab Sample ID: 240-158349-5

Lab Sample ID: 240-158349-6

Lab Sample ID: 240-158349-7

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

3 4 5 6 7 8 9 10 11 12

Client Sample ID: MW-16-03 Date Collected: 10/18/21 13:13 Date Received: 10/20/21 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		5	510882	11/02/21 09:04	JWW	TAL CAN
Total/NA	Analysis	SM 2540C		1	509663	10/25/21 08:20	AJ	TAL CAN

Client Sample ID: MW-16-04 Date Collected: 10/18/21 10:26 Date Received: 10/20/21 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			509270	10/21/21 14:00	SHB	TAL CAN
Total Recoverable	Analysis	6010B		1	509522	10/22/21 23:09	RKT	TAL CAN
Total Recoverable	Prep	3005A			509270	10/21/21 14:00	SHB	TAL CAN
Total Recoverable	Analysis	6020		1	509863	10/25/21 20:32	AJC	TAL CAN
Total/NA	Analysis	9056A		5	510882	11/02/21 09:24	JWW	TAL CAN
Total/NA	Analysis	9056A		25	510882	11/02/21 09:45	JWW	TAL CAN
Total/NA	Analysis	SM 2540C		1	509663	10/25/21 08:20	AJ	TAL CAN

Client Sample ID: MW-16-05 Date Collected: 10/18/21 15:01 Date Received: 10/20/21 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			509270	10/21/21 14:00	SHB	TAL CAN
Total Recoverable	Analysis	6010B		1	509522	10/22/21 23:22	RKT	TAL CAN
Total Recoverable	Prep	3005A			509270	10/21/21 14:00	SHB	TAL CAN
Total Recoverable	Analysis	6020		1	509863	10/25/21 20:35	AJC	TAL CAN
Total/NA	Analysis	9056A		1	510882	11/02/21 10:45	JWW	TAL CAN
Total/NA	Analysis	9056A		10	510882	11/02/21 11:05	JWW	TAL CAN
Total/NA	Analysis	SM 2540C		1	509663	10/25/21 08:20	AJ	TAL CAN

Client Sample ID: MW-16-06 Date Collected: 10/18/21 13:54 Date Received: 10/20/21 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			509270	10/21/21 14:00	SHB	TAL CAN
Total Recoverable	Analysis	6010B		1	509522	10/22/21 23:27	RKT	TAL CAN
Total Recoverable	Prep	3005A			509270	10/21/21 14:00	SHB	TAL CAN
Total Recoverable	Analysis	6020		1	509863	10/25/21 20:42	AJC	TAL CAN
Total/NA	Analysis	9056A		1	510882	11/02/21 12:05	JWW	TAL CAN
Total/NA	Analysis	9056A		10	510882	11/02/21 12:25	JWW	TAL CAN
Total/NA	Analysis	SM 2540C		1	509663	10/25/21 08:20	AJ	TAL CAN

Dilution

Factor

1

1

1

5

1

Run

Batch

Number

509270

Prepared

or Analyzed

10/21/21 14:00

509522 10/22/21 23:31 RKT

509270 10/21/21 14:00 SHB

509863 10/25/21 20:45 AJC

510882 11/02/21 12:45 JWW

510882 11/02/21 13:05 JWW

509663 10/25/21 08:20 AJ

Analyst

SHB

Lab

TAL CAN

Lab Sample ID: 240-158349-9

Batch

Туре

Prep

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Prep Type

Total/NA

Total/NA

Total/NA

Total Recoverable

Total Recoverable

Total Recoverable

Total Recoverable

Batch

Method

3005A

6010B

3005A

6020

9056A

9056A

SM 2540C

Lab Sample ID: 240-158349-8

Matrix: Water

Matrix: Water

Client Sample ID: EB-01 Date Collected: 10/18/21 10:50 Date Received: 10/20/21 08:00

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			509270	10/21/21 14:00	SHB	TAL CAN
Total Recoverable	Analysis	6010B		1	509522	10/22/21 23:36	RKT	TAL CAN
Total Recoverable	Prep	3005A			509270	10/21/21 14:00	SHB	TAL CAN
Total Recoverable	Analysis	6020		1	509863	10/25/21 20:47	AJC	TAL CAN
Total/NA	Analysis	9056A		1	510882	11/02/21 13:26	JWW	TAL CAN
Total/NA	Analysis	SM 2540C		1	509663	10/25/21 08:20	AJ	TAL CAN

Laboratory References:

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Accreditation/Certification Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE Range Road Landfill

Job ID: 240-158349-1

Laboratory: Eurofins TestAmerica, Canton

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date	
California	State	2927	02-23-22	ī
Connecticut	State	PH-0590	12-31-21	
Florida	NELAP	E87225	06-30-22	
Georgia	State	4062	02-23-22	
Illinois	NELAP	200004	07-31-22	
lowa	State	421	06-01-23	
Kansas	NELAP	E-10336	04-30-22	
Kentucky (UST)	State	112225	02-23-22	
Kentucky (WW)	State	KY98016	12-31-21	
Minnesota	NELAP	OH00048	12-31-21	
Minnesota (Petrofund)	State	3506	08-01-23	
New Jersey	NELAP	OH001	06-30-22	
New York	NELAP	10975	03-31-22	
Ohio VAP	State	CL0024	12-21-23	
Oregon	NELAP	4062	02-23-22	
Pennsylvania	NELAP	68-00340	08-31-22	I
Texas	NELAP	T104704517-18-10	08-31-22	
Virginia	NELAP	11570	09-14-22	
Washington	State	C971	01-12-22	
West Virginia DEP	State	210	12-31-21	

Sourofins Environment Testing America): COC No: 240-76126-30501.1	Page Page 1 of 1	Job #:				F - MeOH R - Na2S203 G - Amchlor S - H2S04 H - Ascolar C - TSP Dndrechvirate	I - Ice J - DI Water	K - EDA L - EDA	of con	19dmuki Isjo											240-158349 Chain of Custody	es are retained longer than 1 month)	Archive For Months			DaterTime: 10/19/21 (1415 Company	-21 0800 ETA			1 2 3 4 5 6 7 7
MICH 19	Carrier Tracking No(s)	E-Mail: Kris.Brooks@Eurofinset.com	Analysis Requested	91		6,	H 4074	, Zn 7 , Zn 7 , Z, 2 , Z,	, 56, A 9, 17, 9 1 Targe 1 Targe 1 Targe 1 Targe 1 Targe 1 Targe	Ca, Na , Se, Na , Se, Se, A , andard , andard , andard , andard , andard , andard	96100 MS/M 3508 - Calca TL 3508 - Can, N. M. 3315 Ra228 - Si 3315 Ra22		×××	× ×	**	XX	N X X N			N X X N		240-158349	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	Return To Client Disposal By Lab	Special Instructions/QC Requirements:	Method of 9	- flight	The formed Dy. Date	Received by: Date	Cooler Temperature(s) °C and Other Remarks:	8 9 1(1) 1)
Chain of Custody	Krenz	- 395- 2804		Jested:	d (days):		(0	01 10			Sample Matrix 60 Type (weaker, 10 Type (second) (second) (second) Time G=crah) (second) (second) (second)	Preservation Code: X	1144 G Water NN	···· 6 Water W	1232 6 Water NN	1313 G when MW	1026 6 water N	1 1501 C Water NW	1354 6 Winher W	0934 6 Water N	1050 6 water N		-	Unknown Radiological		Date: Time:	(/1413	21 1415 Company			
150 "	Sampler	Phone: 734		Due Date Requested:	TAT Requested (days):		Fo#: (Fax) TBD	WO# 370029.0000 P1 T2	Project #: 24016807	#MOSS	Samole Date		10-18-21	10-13-21	10-12-31	10-13-21	12-51-01	10-18-31	10-13-01	10-19-21	10-12-21			ant Poison B	Other (specify)		Date/Time: 10-19-2		Date/Time:	Seal No.:	
Eurofins TestAmerica, Canton 4101 Shuffel Street NW North Canton. OH 44720 Phone (330) 497-9396 Fax (330) 497-0772	Client Information	Client Contact: Jacob Krenz	Company: TRC Environmental Corporation.	Address 1540 Eisenhower Place	City. Ann Arbor	State, Zip: MI, 48108-7080	Phone: 313-971-7080(Tel) 313-971-9022(Fax)	Email: JKrenz@trccompanies.com	Project Name: CCR DTE Range Road Landfill	Site: Leachate Sample Michigan	Sample Identification		Mw-16-01	10-000	Mw-16-02	mu-16-03	MW-16-04	MW- 16-05	MW-16-06	10-91-mu	EB-01		Possible Hazard Identification	Non-Hazard Flammable	Uteriverable Requested: 1, 11, 11, 1V. Other (specify)	Empty Kit Relinquished by:	Relinguished by	Relindushed by	Reithquished by:	Custody Seals Intact: Custody Seal No.: A Yes A No	

En Canton Conton Comple Dessint From Alematic	1683/19
Eurofins TestAmerica Canton Sample Receipt Form/Narrative Canton Facility	Login # : <u>158349</u>
Client TRC Enviro Mental Site Name	Cooler unpacked by:
Cooler Received on $ 0-20+2 $ Opened on $ 0-20+2 $	Justin H
FedEx: 1st Grd Exp UPS FAS Chipper Client Drop Off TestAmerica Courier	Öther
Receipt After-hours: Drop-off Date/Time Storage Location	
TestAmerica Cooler # Foam Box Client Cooler Box Other	
COOLANT: Wet Ice Blue Ice Dry Ice Water None Cooler temperature upon receipt See Multiple Cooler Fo	
IR GUN# IR-14 (CF +0.1 °C) Observed Cooler Temp. $\frac{O-5}{C}$ °C Corrected Cooler	Temp 0.6 °C
IR GUN #IR-15 (CF +0.2°C) Observed Cooler Temp. °C Corrected Cooler	
. Were tamper/custody seals on the outside of the cooler(s)? If Yes Quantity	s No
-Were the seals on the outside of the cooler(s) signed & dated?	s No NA Tests that are not checked for pH by
	es No Receiving:
	s No NA
	No VOAs Oil and Grease
Did custody papers accompany the sample(s)? Were the custody papers relinquished & signed in the appropriate place?	TOC
Was/were the person(s) who collected the samples clearly identified on the COC?	
Did all bottles arrive in good condition (Unbroken)?	
	s No
For each sample, does the COC specify preservatives (Y/N) , # of containers (Y/N), and s	ample type of grab/comp(Y/N)?
	s No
	s No
2. Are these work share samples and all listed on the COC? Ye If yes, Questions 13-17 have been checked at the originating laboratory.	s 😡o
	s No NA pH Strip Lot# <u>HC157842</u>
4. Were VOAs on the COC? Ye	
	s No NA
	s No
7. Was a LL Hg or Me Hg trip blank present? Yes	s No
ontacted PM Date by via Verbal V	Voice Mail Other
oncerning	
. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES Dadditional next page	Samples processed by:
	l \$
SAMPLE CONDITION	ing time had owning d
mple(s) were received after the recommended hold were received after the recommended hold were received	ing time had expired. I in a broken container.
mple(s) were received with bubble >6 mm i	
SAMPLE PRESERVATION	
mple(s)were fur	ther preserved in the laboratory.
mple(s) were fur ne preserved: Preservative(s) added/Lot number(s):	
A Samuela Decomposition Data/Time VOAs Frances	
OA Sample Preservation - Date/Time VOAs Frozen:	

14

٦,

WI-NC-099

Login Container Summary Report

Temperature	readings: _
-------------	-------------

			Container Preservative	
Client Sample ID	<u>Lab ID</u>	Container Type	pH Temp Added (mls) Lot #	
MW-16-01	240-158349-B-1	Plastic 500ml - with Nitric Acid	<2	,
DUP-01	240-158349-B-2	Plastic 500ml - with Nitric Acid	<2	
MW-16-02	240-158349-B-3	Plastic 500ml - with Nitric Acid	<2	
MW-16-03	240-158349-B-4	Plastic 500ml - with Nitric Acid	<2	
MW-16-04	240-158349-B-5	Plastic 500ml - with Nitric Acid	<2	
MW-16-05	240-158349-B-6	Plastic 500ml - with Nitric Acid	<2	8
MW-16-06	240-158349-B-7	Plastic 500ml - with Nitric Acid	<2	g
MW-16-07	240-158349-B-8	Plastic 500ml - with Nitric Acid	<2	
EB-01	240-158349-B-9	Plastic 500ml - with Nitric Acid	<2	

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Canton 4101 Shuffel Street NW North Canton, OH 44720 Tel: (330)497-9396

Laboratory Job ID: 240-161243-1

Client Project/Site: CCR DTE Range Road Landfill

For:

TRC Environmental Corporation. 1540 Eisenhower Place Ann Arbor, Michigan 48108-7080

Attn: Mr. Vincent Buening

Brooks S

Authorized for release by: 12/15/2021 3:29:15 PM

Kris Brooks, Project Manager II (330)966-9790 Kris.Brooks@Eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

LINKS **Review your project** results through Total Access Have a Question? Ask-The Expert Visit us at: www.eurofinsus.com/Env

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Method Summary	5
Sample Summary	6
Detection Summary	7
Client Sample Results	8
QC Sample Results	13
QC Association Summary	14
Lab Chronicle	15
Certification Summary	16
Chain of Custody	17

Client: TRC Environmental Corporation. Project/Site: CCR DTE Range Road Landfill

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Presumptive Quality Control

~

PQL

QC RER

RL RPD

TEF

TEQ

TNTC

PRES

Qualifiers		3
General Cher	mistry	
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
Glossary		5
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	9
CNF	Contains No Free Liquid	0
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	9
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	13
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	

Job ID: 240-161243-1

Laboratory: Eurofins TestAmerica, Canton

Narrative

Job Narrative 240-161243-1

Comments

No additional comments.

Receipt

The samples were received on 12/10/2021 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 0.7° C.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Method Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE Range Road Landfill

4
5
8
9

Method	Method Description	Protocol	Laboratory
9056A	Anions, Ion Chromatography	SW846	TAL CAN
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL CAN

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Sample Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE Range Road Landfill

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-161243-1	MW-16-05_2021126	Water	12/06/21 12:15	12/10/21 08:00
240-161243-2	DUP-01_2021126	Water	12/06/21 00:00	12/10/21 08:00
240-161243-3	MW-16-06_2021126	Water	12/06/21 13:10	12/10/21 08:00
240-161243-4	DUP-02_2021126	Water	12/06/21 00:00	12/10/21 08:00
240-161243-5	EQUIPMENT BLANK_2021126	Water	12/06/21 13:20	12/10/21 08:00

Detection Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE Range Road Landfill Job ID: 240-161243-1

	40.05.000440				Lab Sample ID: 240-161243-					
Client Sample ID: MW-	16-05_202112	26			Lad Sa	mple ID: 24	10-161243-1			
– Analyte	Result	Qualifier	RL	Unit	Dil Fac	D Method	Prep Type			
Fluoride	2.0		0.050	mg/L	1	9056A	Total/NA			
Client Sample ID: DUP	-01_2021126				Lab Sa	mple ID: 24	0-161243-2			
Analyte	Result	Qualifier	RL	Unit	Dil Fac	D Method	Prep Type			
Fluoride	2.0		0.050	mg/L	1		Total/NA			
_	2.0		01000							
Client Sample ID: MW-		?6			Lab Sa	mple ID: 24	0-161243-3			
_	16-06_202112	26 Qualifier	RL	Unit		mple ID: 24	10-161243-3 Prep Type			
Client Sample ID: MW-	16-06_202112									
Client Sample ID: MW-	-16-06_202112 		RL	Unit	Dil Fac	D Method SM 2540C	Ргер Туре			
Client Sample ID: MW- Analyte Total Dissolved Solids	-16-06_202112 		RL	Unit	<u>Dil Fac</u> 1 Lab Sa	D Method SM 2540C	Prep Type Total/NA			
Client Sample ID: MW- Analyte Total Dissolved Solids Client Sample ID: DUP	-16-06_202112 	Qualifier	RL 20	Unit mg/L	<u>Dil Fac</u> 1 Lab Sa	D Method SM 2540C	Prep Type Total/NA			

Client: TRC Environmental Corporation. Project/Site: CCR DTE Range Road Landfill Job ID: 240-161243-1

Client Sample ID: MW-1 Date Collected: 12/06/21 12: Date Received: 12/10/21 08:	15			La	b Sample	ID: 240-16 [°] Matrix	1243-1 : Water
General Chemistry Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	2.0	0.050	mg/L			12/11/21 09:20	1

Client: TRC Environmental Corporation. Project/Site: CCR DTE Range Road Landfill Job ID: 240-161243-1

8

Client Sample ID: DUP-01_2021126 Lab Sample ID: 240-161243-2 Date Collected: 12/06/21 00:00 Matrix: Water Date Received: 12/10/21 08:00 **General Chemistry** Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac 12/11/21 09:41 Fluoride 0.050 mg/L 2.0 1

Client: TRC Environmental Corporation. Project/Site: CCR DTE Range Road Landfill Job ID: 240-161243-1

Client Sample ID: MW-10 Date Collected: 12/06/21 13:1 Date Received: 12/10/21 08:0	0	26			La	b Sample	ID: 240-161 Matrix	243-3 : Water
General Chemistry	Decult	Qualifier	RL	Unit		Prepared	Analvzed	Dil Fac
Analyte	Result	Quaimer	RL .		D	Frepareu	Allalyzeu	DIIFac

Client: TRC Environmental Corporation. Project/Site: CCR DTE Range Road Landfill Job ID: 240-161243-1

Client Sample ID: DUP-0 Date Collected: 12/06/21 00:0					La	b Sample	ID: 240-161 Matrix	243-4 : Water
Date Received: 12/10/21 08:0	0							
General Chemistry								
Analyte	Result C	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	1300		20	mg/L			12/13/21 09:50	1

Client Sample ID: EQUIPMENT BLANK_2021126 Date Collected: 12/06/21 13:20 Date Received: 12/10/21 08:00

Lab Sample ID: 240-161243-5 Matrix: Water

Matrix: Water

8 9

Job ID: 240-161243-1

General Chemistry Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	0.050		0.050	mg/L			12/11/21 10:03	1
Total Dissolved Solids	10	U	10	mg/L			12/13/21 09:50	1

Eurofins TestAmerica, Canton

Job ID: 240-161243-1

Method: 9056A - Anions, Ion Chromatography

Lab Sample ID: MB 240-516443/3 Matrix: Water							Cli	ient Sam	ple ID: Metho Prep Type: T	
Analysis Batch: 516443										
	MB	MB								
Analyte	Result	Qualifier		RL	Unit		DI	Prepared	Analyzed	Dil Fa
Fluoride	0.050	U	0	.050	mg/L				12/11/21 08:36	
Lab Sample ID: LCS 240-516443/4						Clie	ent Sa	ample ID:	Lab Control	Sample
Matrix: Water									Prep Type: T	otal/N/
Analysis Batch: 516443										
			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Fluoride			2.50	2.70		mg/L		108	90 - 110	
Lab Cample ID: MD 240 540527/4							01		ale ID: Methe	
Matrix: Water							Cli	ient Sam	ple ID: Metho Prep Type: T	
Matrix: Water	МВ	МВ					Cli	ient Sam	•	
Matrix: Water Analysis Batch: 516527		MB Qualifier		RL	Unit			ient Sam	•	otal/N
Matrix: Water Analysis Batch: 516527 Analyte		Qualifier		RL	Unit mg/L				Prep Type: T	otal/N
Matrix: Water Analysis Batch: 516527 Analyte Total Dissolved Solids	Result	Qualifier					<u>D</u>	Prepared	Prep Type: T	otal/N
Matrix: Water Analysis Batch: 516527 Analyte Total Dissolved Solids Lab Sample ID: LCS 240-516527/2	Result	Qualifier					<u>D</u>	Prepared	Prep Type: T Analyzed 12/13/21 09:50	otal/N Dil Fa Sampl
Lab Sample ID: MB 240-516527/1 Matrix: Water Analysis Batch: 516527 Analyte Total Dissolved Solids Lab Sample ID: LCS 240-516527/2 Matrix: Water Analysis Batch: 516527	Result	Qualifier					<u>D</u>	Prepared	Prep Type: T <u>Analyzed</u> 12/13/21 09:50 Lab Control	otal/N Dil Fa Sampl
Matrix: Water Analysis Batch: 516527 Analyte Total Dissolved Solids Lab Sample ID: LCS 240-516527/2 Matrix: Water	Result	Qualifier		10			<u>D</u>	Prepared	Prep Type: T <u>Analyzed</u> 12/13/21 09:50 Lab Control	otal/N Dil Fa Sampl
Matrix: Water Analysis Batch: 516527 Analyte Total Dissolved Solids Lab Sample ID: LCS 240-516527/2 Matrix: Water	Result	Qualifier	Spike Added	10 LCS	mg/L		<u>D</u>	Prepared ample ID:	Prep Type: T Analyzed 12/13/21 09:50 Lab Control Prep Type: T	Dil Fa

QC Association Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE Range Road Landfill

General Chemistry

Analysis Batch: 516443

Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MW-16-05_2021126	Total/NA	Water	9056A	
DUP-01_2021126	Total/NA	Water	9056A	
EQUIPMENT BLANK_2021126	Total/NA	Water	9056A	
Method Blank	Total/NA	Water	9056A	
Lab Control Sample	Total/NA	Water	9056A	
16527				
Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
	MW-16-05_2021126 DUP-01_2021126 EQUIPMENT BLANK_2021126 Method Blank Lab Control Sample 16527	MW-16-05_2021126 Total/NA DUP-01_2021126 Total/NA EQUIPMENT BLANK_2021126 Total/NA Method Blank Total/NA Lab Control Sample Total/NA 16527	MW-16-05_2021126 Total/NA Water DUP-01_2021126 Total/NA Water EQUIPMENT BLANK_2021126 Total/NA Water Method Blank Total/NA Water Lab Control Sample Total/NA Water 16527 Image: Control Sample Image: Control Sample	MW-16-05_2021126Total/NAWater9056ADUP-01_2021126Total/NAWater9056AEQUIPMENT BLANK_2021126Total/NAWater9056AMethod BlankTotal/NAWater9056ALab Control SampleTotal/NAWater9056A16527Image: Control SampleImage: Control SampleImage: Control Sample

Lab Sample ID 240-161243-3	Client Sample ID MW-16-06_2021126	Total/NA	Matrix Water	Method SM 2540C	Prep Batch
240-161243-4	DUP-02_2021126	Total/NA	Water	SM 2540C	
240-161243-5	EQUIPMENT BLANK_2021126	Total/NA	Water	SM 2540C	
MB 240-516527/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 240-516527/2	Lab Control Sample	Total/NA	Water	SM 2540C	

Job ID: 240-161243-1

Job ID: 240-161243-1

Client Sam Date Collecter Date Receiver	d: 12/06/21 1	2:15	126				Lab Sa	mple ID:	240-161243-1 Matrix: Water
_	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	9056A		1	516443	12/11/21 09:20	AGC	TAL CAN	
Client Sam	ple ID: DUI	P-01 202112	6				Lab Sa	mple ID:	240-161243-2
Date Collecte Date Received								· · ·	Matrix: Wate
_	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	9056A		1	516443	12/11/21 09:41	AGC	TAL CAN	
Date Collecte									Matrix: Wate
Date Collecte	d: 12/10/21 0	8:00		Dilution	Batch	Prepared			Matrix: Wate
Date Collecte Date Received	d: 12/10/21 0 Batch	8:00 Batch	Run	Dilution	Batch Number	Prepared or Analyzed	Analyst	Lab	Matrix: Wate
Date Collecte	d: 12/10/21 0	8:00	Run	Dilution <u>Factor</u> 1	Batch Number 516527	Prepared or Analyzed 12/13/21 09:50	Analyst KMS	- Lab TAL CAN	Matrix: Wate
Date Collecter Date Received Prep Type Total/NA	d: 12/10/21 0 Batch Type Analysis	8:00 Batch Method SM 2540C		Factor	Number	or Analyzed	KMS	TAL CAN	
Date Collected Date Received Prep Type Total/NA Client Samp Date Collected	d: 12/10/21 0 Batch Type Analysis ple ID: DUI d: 12/06/21 0	8:00 Batch Method SM 2540C P-02_202112 0:00		Factor	Number	or Analyzed	KMS	TAL CAN	240-161243-4
Date Collecter Date Received Prep Type Total/NA Client Samp Date Collecter	d: 12/10/21 0 Batch Type Analysis ple ID: DUI d: 12/06/21 0	8:00 Batch Method SM 2540C P-02_202112 0:00		Factor	Number	or Analyzed	KMS	TAL CAN	Matrix: Water 240-161243-4 Matrix: Water
Date Collected Date Received Prep Type Total/NA Client Samp Date Collected	d: 12/10/21 0 Batch Type Analysis ple ID: DUI d: 12/06/21 0 d: 12/10/21 0	8:00 Batch Method SM 2540C P-02_202112 0:00 8:00		Factor 1	Number 516527	or Analyzed 12/13/21 09:50	KMS	TAL CAN	240-161243-4
Date Collecter Date Received Prep Type Total/NA Client Samp Date Collecter Date Received	d: 12/10/21 0 Batch Type Analysis ple ID: DUI d: 12/06/21 0 d: 12/10/21 0 Batch	8:00 Batch Method SM 2540C P-02_202112 0:00 8:00 Batch	6	1	Number 516527 Batch	or Analyzed 12/13/21 09:50 Prepared	KMS Lab Sa Analyst	TAL CAN	240-161243-4
Prep Type Total/NA Client Samp Date Collecter Date Received Prep Type Total/NA	d: 12/10/21 0 Batch Type Analysis ple ID: DUI d: 12/06/21 0 d: 12/10/21 0 Batch Type Analysis	8:00 Batch Method SM 2540C P-02_202112 0:00 8:00 Batch Method	6	Factor 1 1 1 1 1 1 1 1 1	Number 516527 Batch Number	or Analyzed 12/13/21 09:50 Prepared or Analyzed	KMS Lab Sa Analyst KMS	TAL CAN Imple ID: Lab TAL CAN	240-161243-4 Matrix: Wate
Prep Type Total/NA Client Sam Date Collecter Date Received Date Received Total/NA Client Sam Total/NA	d: 12/10/21 0 Batch Type Analysis ple ID: DUI d: 12/06/21 0 d: 12/10/21 0 Batch Type Analysis ple ID: EQI d: 12/06/21 1	8:00 Batch Method SM 2540C P-02_202112 0:00 8:00 Batch Method SM 2540C UIPMENT BL 3:20	6	Factor 1 1 1 1 1 1 1 1 1	Number 516527 Batch Number	or Analyzed 12/13/21 09:50 Prepared or Analyzed	KMS Lab Sa Analyst KMS	TAL CAN Imple ID: Lab TAL CAN	240-161243-4
Date Collecter Date Received Prep Type Total/NA Client Sam Date Collecter Date Received Prep Type Total/NA Client Sam Date Collecter Date Collecter	d: 12/10/21 0 Batch Type Analysis ple ID: DUI d: 12/06/21 0 d: 12/10/21 0 Batch Type Analysis ple ID: EQI d: 12/06/21 1	8:00 Batch Method SM 2540C P-02_202112 0:00 8:00 Batch Method SM 2540C UIPMENT BL 3:20	6	Factor 1 1 1 1 1 1 1 1 1	Number 516527 Batch Number	or Analyzed 12/13/21 09:50 Prepared or Analyzed	KMS Lab Sa Analyst KMS	TAL CAN Imple ID: Lab TAL CAN	240-161243-4 Matrix: Water 240-161243-5
Total/NA Client Sam Date Collecte Date Received Prep Type Total/NA	d: 12/10/21 0 Batch Type Analysis ple ID: DUI d: 12/06/21 0 d: 12/10/21 0 Batch Type Analysis ple ID: EQI d: 12/06/21 1 d: 12/10/21 0	8:00 Batch Method SM 2540C P-02_202112 0:00 8:00 Batch Method SM 2540C UIPMENT BL 3:20 8:00	6	Factor 1	Number 516527 Batch Number 516527	or Analyzed 12/13/21 09:50 Prepared or Analyzed 12/13/21 09:50	KMS Lab Sa Analyst KMS	TAL CAN Imple ID: Lab TAL CAN	240-161243-4 Matrix: Water 240-161243-5

1

516527 12/13/21 09:50 KMS

Laboratory References:

Analysis

SM 2540C

Total/NA

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

TAL CAN

Accreditation/Certification Summary

Client: TRC Environmental Corporation. Project/Site: CCR DTE Range Road Landfill

Job ID: 240-161243-1

Laboratory: Eurofins TestAmerica, Canton

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date	
California	State	2927	02-23-22	
Connecticut	State	PH-0590	12-31-21	
Florida	NELAP	E87225	06-30-22	
Georgia	State	4062	02-23-22	
Illinois	NELAP	200004	07-31-22	
lowa	State	421	06-01-23	
Kansas	NELAP	E-10336	04-30-22	
Kentucky (UST)	State	112225	02-23-22	
Kentucky (WW)	State	KY98016	12-31-21	
Minnesota	NELAP	OH00048	12-31-21	
Minnesota (Petrofund)	State	3506	08-01-23	
New Jersey	NELAP	OH001	06-30-22	
New York	NELAP	10975	03-31-22	
Ohio VAP	State	CL0024	12-21-23	
Oregon	NELAP	4062	02-23-22	
Pennsylvania	NELAP	68-00340	08-31-22	
Texas	NELAP	T104704517-18-10	08-31-22	
Virginia	NELAP	11570	09-14-22	
Washington	State	C971	01-12-22	
West Virginia DEP	State	210	12-31-21	

Solution Environment Testing America	COC No: 240-80261-33863 1	Page:		20d	A - HCL M - Hexane B - NOH N - None C - Zh Acetate O - AsNaO2		F - MeOH R - Na2S203 G - Amchlor S - H2S04 H - Asconhir Acid T - TSP Dovember and	I - Ice J - Di Water	K - EDTA L - EDA	Other:	tal Number c	Point Special Instructions/Note:			1		K				tained longer than 1 month) Archive For Months			10:30 Company	10-21 SDO COMPARTA	Ver: 06/08/2021
MICHIGAN 190	Carrier Tracking No(s):	State of Origin: com	Analvsis Reguested						22	40-16	1243 Chair	n of C	Custo	dy							essed if samples are r		Method of Shipment:	Storage	coder Temperature(s) "Clang Other Remarks)
in of Custody Record	Lab PM: Brooks, Kris M		PWSID:			2	(c			oride SD (Ye			X W W	C Water NN X	C Water NN N	C- Water NNN	G Water NU X X	Water	Water		Sample Disposal (A 1 Radiological Return To Client	Special Instructio	Time:	J Re Re	Company	
Chai	Sampler: And Cet. Lubride	4		Due Date Requested:	TAT Requested (days):	Compliance Project: A Yes A No	PO#: TBD	W0 #: 370029.0000 P1 T2	Project #: 24016807	SSOW#:	Sample	Sample Uate	2121 12.9.21		12621 1310	12.921	202/16 17.6.21 1320				Poison B Unknown Rad		Date:	6.21 162 19/21 103	13/4/21 1350	
Eurofins TestAmerica, Canton 4101 Shuffel Street NW North Canton. OH 44720 Phone: 330-497-9396 Fax: 330-497-0772	Client Information	Client Contact: Mr. Vincent Buening	Company: TRC Environmental Corporation.	Address: 1540 Eisenhower Place	City. Ann Arbor State. Zp:	Mi, 48108-7080 Phone:	ritorie: 313-971-7080(Tel) 313-971-9022(Fax)	tmaii: vbuening@trccompanies.com	Project Name: CCR DTE Range Road Landfill	Site: Michigan	Semanto Idonitizanti a		MW-16-05 20207.6	Dup-01 202/126	Mu-16-06-2021126	Duroz - 2021-126	Equipment Blank _20				Possible Hazard Identification Non-Hazard Elammable Skin Irritant	Deliverable Requested: I, II, III, IV, Other (specify)	-	Reinquished by And Tew whaley Reinquished by Helinquished by Helinquished by	Custody Seals Intact: Custody Seal No.: A Yes A No	DH 3 251 7

Eurofine Test America Con	ton Somela Dessint Form Non		Torin 4 . 1/17/12
Canton Eacility	ton Sample Receipt Form/Narr	auve	Login # : 161243
Client RC	Site Name		Cooler unpacked by:
Cooler Received on 2-1	0-21 Opened on	12-10-21	Vorm loga
FedEx: 1 st Grd Exp UPS		ff TestAmerica Courier	Other
Receipt After-hours: Drop-o		Storage Location	
 TestAmerica Cooler # Packing material used COOLANT: We 1. Cooler temperature upon IR GUN# IR-14 (CF +0 IR GUN #IR-15 (CF +0) 2. Were tamper/custody seal -Were the seals on the o -Were tamper/custody s 3. Shippers' packing slip attact 4. Did custody papers accom 5. Were the custody papers references of the seal of the seal	Foam Box Client Cool Bubble Wrap Foam Plastic I Ince Blue Ice Dry Ice W receipt .1 °C) Observed Cooler Temp. .2 °C) Observed Cooler Temp. .2 °C) Observed Cooler Temp. .3 on the outside of the cooler(s)? If utside of the cooler(s) signed & date eals on the bottle(s) or bottle kits (I eals intact and uncompromised? ched to the cooler(s)? pany the sample(s)? elinquished & signed in the appropri- tio collected the samples clearly ider of condition (Unbroken)? Date/Time) be reconciled with the COC specify preservativer (Y/N), # I for the test(s) indicated? d to perform indicated analyses? eles and all listed on the COC? we been checked at the originating is (s) at the correct pH upon receipt?	ler Box Other Bag None Other Vater None See Multiple Cooler For C Corrected Cooler C Corrected Cooler f Yes Quantity LHg/MeHg)? Ye triate place? ntified on the COC? COC? f Ye for containers (Y/N), and so Ye laboratory. Ye re than this.	Temp. Or / °C Temp. °C No No No No No No No No No No
17. Was a LL Hg or Me Hg tr		Ye	\bigcirc
Contacted PM	_ Date by	via Verbal V	Voice Mail Other
Concerning			
18. CHAIN OF CUSTODY	& SAMPLE DISCREPANCIES	additional next page	Samples processed by:
Sample(s)	were received a	were received	d in a broken container.
20. SAMPLE PRESERVAT	ION		
Sample(s)		were fu	rther preserved in the laboratory.
Time preserved:	Preservative(s) added/Lot number	were iu	raior preserved in the laboratory.
	ate/Time VOAs Frozen:		

Appendix C Data Quality Reviews

Laboratory Data Quality Review Groundwater Monitoring Event May 2021 DTE Electric Company Range Road Landfill (DTE RRLF)

Groundwater samples were collected by TRC for the May 2021 sampling event. Samples were analyzed for anions, total recoverable metals and total dissolved solids by Eurofins-Test America Laboratories, Inc. (Eurofins-TA), located in North Canton, Ohio. The laboratory analytical results are reported in laboratory report 240-150045-1.

During the May 2021 sampling event, a groundwater sample was collected from each of the following wells:

•	MW-16-01	•	MW-16-02	•	MW-16-03	•	MW-16-04
-	MW-16-05		MW-16-06	-	MW-16-07		

Each sample was analyzed for the following constituents:

Analyte Group	Method
Anions (Chloride, Fluoride, Sulfate)	SW846 9056A
Total Recoverable Boron	SW846 3005A/6010B
Total Recoverable Calcium	SW846 3005A/6020
Total Dissolved Solids	SM 2540C

TRC reviewed the laboratory data to assess data usability. The following sections summarize the data review procedure and the results of the review.

Data Quality Review Procedure

The analytical data were reviewed using the USEPA National Functional Guidelines for Inorganic Superfund Data Review (USEPA, 2020). The following items were included in the evaluation of the data:

- Sample receipt, as noted in the cover page or case narrative;
- Technical holding times for analyses;
- Reporting limits (RLs) compared to project-required RLs;
- Data for method blanks, equipment blanks, and field blanks. Method blanks are used to assess potential contamination arising from laboratory sample preparation and/or analytical procedures. Field and equipment blanks are used to assess potential contamination arising from field procedures;
- Data for laboratory control samples (LCSs) and laboratory control sample duplicates (LCSDs), when performed. The LCSs and/or LCSDs are used to assess the accuracy of the analytical method using a clean matrix;
- Percent recoveries for matrix spike (MS) and matrix spike duplicates (MSD), when performed on project samples. Percent recoveries are calculated for each analyte spiked and used to assess bias due to sample matrix effects;

- Data for laboratory duplicates, when performed on project samples. The laboratory duplicates are replicate analyses of one sample and are used to assess the precision of the analytical method;
- Data for blind field duplicates. Field duplicate samples are used to assess variability introduced by the sampling and analytical processes; and
- Overall usability of the data.

This data usability report addresses the following items:

- Usability of the data if quality control (QC) results suggest potential problems with all or some of the data;
- Actions regarding specific QC criteria exceedances.

Review Summary

The data quality objectives and laboratory completeness goals for the project were met, and the data are usable for their intended purpose. A summary of the data quality review, including non-conformances and issues identified in this evaluation are noted below.

- Appendix III constituents will be utilized for the purposes of a detection monitoring program.
- Data are usable for the purposes of the detection monitoring program.

QA/QC Sample Summary

- Samples MW-16-01, MW-16-02, MW-16-03, MW-16-06, DUP-01, and EB-01 were analyzed two days past the holding time and samples MW-16-05 and MW-16-07 were analyzed one day past the holding time for TDS; the positive and non-detect results for TDS are potentially biased low, as summarized in the attached table, Appendix B.
- Target analytes were not detected in the equipment blank (EB-01).
- Target analytes were not detected in the method blanks.
- LCS recoveries for all target analytes were within laboratory control limits.
- MS/MSD analyses were not performed for the anions or total recoverable metals analyses as required by the QAPP.
- Laboratory duplicate analysis was performed on sample MW-16-01 for TDS; the relative percent difference (RPD) was within the QC limits.
- DUP-01 corresponds with MW-16-01; RPDs between the parent and duplicate sample were within the QC limits.

Laboratory Data Quality Review Groundwater Monitoring Event June 2021 - Verification DTE Electric Company Range Road Landfill (DTE RRLF)

Groundwater samples were collected by TRC for the June 2021 verification sampling event. Samples were analyzed for sulfate and/or total dissolved solids by Eurofins-Test America Laboratories, Inc. (Eurofins-TA), located in North Canton, Ohio. The laboratory analytical results are reported in laboratory report 240-152019-1.

During the June 2021 sampling event, a groundwater sample was collected from each of the following wells and locations:

• MW-16-04 • MW-16-05

Each sample was analyzed for one or more of the following constituents:

Analyte Group	Method		
Sulfate	SW846 9056A		
Total Dissolved Solids (TDS)	SM 2540C		

TRC reviewed the laboratory data to assess data usability. The following sections summarize the data review procedure and the results of the review.

Data Quality Review Procedure

The analytical data were reviewed using the USEPA National Functional Guidelines for Inorganic Superfund Data Review (USEPA, 2020). The following items were included in the evaluation of the data:

- Sample receipt, as noted in the cover page or case narrative;
- Technical holding times for analyses;
- Reporting limits (RLs) compared to project-required RLs;
- Data for method blanks and equipment blanks, where applicable. Method blanks are used to assess potential contamination arising from laboratory sample preparation and/or analytical procedures. Equipment blanks are used to assess potential contamination arising from field procedures;
- Data for laboratory control samples (LCSs). The LCSs are used to assess the accuracy of the analytical method using a clean matrix;
- Data for matrix spike and matrix spike duplicate samples (MS/MSDs), where applicable. The MS/MSDs are used to assess the accuracy and precision of the analytical method using a sample from the dataset;
- Data for laboratory duplicates, where applicable. The laboratory duplicates are used to assess the precision of the analytical method using a sample from the dataset;
- Data for blind field duplicates. Field duplicate samples are used to assess variability introduced by the sampling and analytical processes; and

• Overall usability of the data.

This data usability report addresses the following items:

- Usability of the data if quality control (QC) results suggest potential problems with all or some of the data;
- Actions regarding specific QC criteria exceedances.

Review Summary

The data quality objectives and laboratory completeness goals for the project were met, and the data are usable for their intended purpose. A summary of the data quality review, including non-conformances and issues identified in this evaluation are noted below.

- The reviewed Appendix III constituents will be utilized for the purposes of a detection monitoring program.
- Data are usable for the purposes of the detection monitoring program.

QA/QC Sample Summary:

- TDS was detected in the equipment blank (EB-01). However, results for TDS in the associated samples were > 10x the equipment blank concentration; thus, there is no impact on data usability due to this issue.
- Target analytes were not detected in the method blanks.
- LCS recoveries for target analytes were within laboratory control limits.
- MS/MSD analyses were not performed for the sulfate analyses as required by the quality assurance project plan (QAPP).
- Laboratory duplicate analysis was performed on sample MW-16-04 for TDS; all criteria were met.
- Dup-01 corresponds with MW-16-04 and Dup-02 corresponds with MW-16-05; relative percent differences (RPDs) between the parent and duplicate samples were within the QC limits.

Laboratory Data Quality Review Groundwater Monitoring Event October 2021 DTE Electric Company Range Road Landfill (DTE RRLF)

Groundwater samples were collected by TRC for the October 2021 sampling event. Samples were analyzed for anions, total recoverable metals, and total dissolved solids by Euorfins-Test America Laboratories, Inc. (Euorfins-TA), located in North Canton, Ohio. The laboratory analytical results are reported in laboratory report 240-158349-1.

During the October 2021 sampling event, a groundwater sample was collected from each of the following wells:

MW-16-01
 MW-16-02
 MW-16-03
 MW-16-04
 MW-16-05
 MW-16-06
 MW-16-07

Each sample was analyzed for the following constituents:

Analyte Group	Method	
Anions (Chloride, Fluoride, Sulfate)	SW846 9056A	
Total Recoverable Boron	SW846 3005A/6010B	
Total Recoverable Calcium	SW846 3005A/6020	
Total Dissolved Solids (TDS)	SM 2540C	

TRC reviewed the laboratory data to assess data usability. The following sections summarize the data review procedure and the results of the review.

Data Quality Review Procedure

The analytical data were reviewed using the USEPA National Functional Guidelines for Inorganic Superfund Data Review (USEPA, 2020). The following items were included in the evaluation of the data:

- Sample receipt, as noted in the cover page or case narrative;
- Technical holding times for analyses;
- Reporting limits (RLs) compared to project-required RLs;
- Data for method blanks and equipment blanks. Method blanks are used to assess potential contamination arising from laboratory sample preparation and/or analytical procedures. Equipment blanks are used to assess potential contamination arising from field procedures;
- Data for laboratory control samples (LCSs). The LCSs are used to assess the accuracy of the analytical method using a clean matrix;
- Data for matrix spike and matrix spike duplicate samples (MS/MSDs), where applicable. The MS/MSDs are used to assess the accuracy and precision of the analytical method using a sample from the dataset;

- Data for laboratory duplicates, where applicable. The laboratory duplicates are used to assess the precision of the analytical method using a sample from the dataset;
- Data for blind field duplicates. Field duplicate samples are used to assess variability introduced by the sampling and analytical processes; and
- Overall usability of the data.

This data usability report addresses the following items:

- Usability of the data if quality control (QC) results suggest potential problems with all or some of the data;
- Actions regarding specific QC criteria exceedances.

Review Summary

The data quality objectives and laboratory completeness goals for the project were met, and the data are usable for their intended purpose. A summary of the data quality review, including non-conformances and issues identified in this evaluation are noted below.

- Appendix III constituents will be utilized for the purposes of a detection monitoring program.
- Data are usable for the purposes of the detection monitoring program.

QA/QC Sample Summary

- There was one equipment blank submitted with this dataset (EB-01). No target analytes were detected in the equipment blank.
- Target analytes were not detected in the method blanks.
- LCS recoveries for all target analytes were within laboratory QC limits.
- MS/MSD analyses were not performed on a groundwater sample for total recoverable metals and anions in this data set. Per the project quality assurance project plan (QAPP), MS/MSD analyses are required for total recoverable calcium and boron, and anions at a frequency of 1 per 20 samples.
- Laboratory duplicate analysis was performed for TDS on sample MW-16-06. The relative percent difference (RPD) was within the QC limit.
- The field duplicate pair samples were MW-16-01 and DUP-01; RPDs between the parent and duplicate sample were within the QC limits.
- The RL for boron (100 µg/L) was below the RL specified in the QAPP of 200 µg/L. However, there is no impact on data usability due to this issue since all detected sample results for boron were > 200 µg/L.
- The nondetect RLs (5.0 mg/L) for sulfate in samples MW-16-03 and MW-16-04 were above the QAPP-specified RL (1.0 mg/L) due to a 5-fold dilution likely performed due to elevated concentrations of chloride.

Laboratory Data Quality Review Groundwater Monitoring Event December 2021 DTE Electric Company Range Road Landfill (DTE RRLF)

Groundwater samples were collected by TRC for the December 2021 sampling event. Samples were analyzed for fluoride and total dissolved solids by Euorfins-Test America Laboratories, Inc. (Euorfins-TA), located in North Canton, Ohio. The laboratory analytical results are reported in laboratory report 240-161243-1.

During the December 2021 sampling event, a groundwater sample was collected from each of the following wells:

MW-16-05 MW-16-06

Each sample was analyzed for the following constituents:

Analyte Group	Method
Anions (Fluoride)	SW846 9056A
Total Dissolved Solids (TDS)	SM 2540C

TRC reviewed the laboratory data to assess data usability. The following sections summarize the data review procedure and the results of the review.

Data Quality Review Procedure

The analytical data were reviewed using the USEPA National Functional Guidelines for Inorganic Superfund Data Review (USEPA, 2020). The following items were included in the evaluation of the data:

- Sample receipt, as noted in the cover page or case narrative;
- Technical holding times for analyses;
- Reporting limits (RLs) compared to project-required RLs;
- Data for method blanks and equipment blanks. Method blanks are used to assess potential contamination arising from laboratory sample preparation and/or analytical procedures. Equipment blanks are used to assess potential contamination arising from field procedures;
- Data for laboratory control samples (LCSs). The LCSs are used to assess the accuracy of the analytical method using a clean matrix;
- Data for matrix spike and matrix spike duplicate samples (MS/MSDs), where applicable. The MS/MSDs are used to assess the accuracy and precision of the analytical method using a sample from the dataset;
- Data for laboratory duplicates, where applicable. The laboratory duplicates are used to assess the precision of the analytical method using a sample from the dataset;
- Data for blind field duplicates. Field duplicate samples are used to assess variability introduced by the sampling and analytical processes; and
- Overall usability of the data.

This data usability report addresses the following items:

- Usability of the data if quality control (QC) results suggest potential problems with all or some of the data;
- Actions regarding specific QC criteria exceedances.

Review Summary

The data quality objectives and laboratory completeness goals for the project were met, and the data are usable for their intended purpose. A summary of the data quality review, including non-conformances and issues identified in this evaluation are noted below.

- Appendix III constituents and iron will be utilized for the purposes of a detection monitoring program.
- Data are usable for the purposes of the detection monitoring program.

QA/QC Sample Summary

- There was one equipment blank submitted with this dataset (EQUIPMENT-BLANK). No target analytes were detected in the equipment blank.
- Target analytes were not detected in the method blanks.
- LCS recoveries for all target analytes were within laboratory QC limits.
- MS/MSD analyses were not performed on a groundwater sample for total recoverable metals and anions in this data set. Per the project quality assurance project plan (QAPP), MS/MSD analyses are required for total recoverable calcium and boron, and anions at a frequency of 1 per 20 samples.
- The field duplicate pair samples were MW-16-05 with DUP-01 and MW-16-06 with DUP-02; RPDs between the parent and duplicate sample were within the QC limits.
- The nondetect RLs (20 mg/L) for TDS in samples MW-16-06 and DUP-02 were above the QAPP-specified RL (10 mg/L). TDS was detected above 20 mg/L in both samples; therefore, data usability is not affected.

Appendix D Uppermost Useable Aquifer Prediction Limit Update

Technical Memorandum

Date:	December 15, 2021
То:	Chris Scieszka, DTE Electric Company
From:	Vince Buening, TRC Sarah Holmstrom, TRC Kristin Lowery, TRC
Project No.:	413591.0000.0000 Phase 1 Task 1
Subject:	Uppermost Useable Aquifer Prediction Limit Update – DTE Electric Company, Range Road Coal Combustion Residual Landfill

Statistical background limits for the DTE Electric Company (DTE Electric) Range Road Landfill (RRLF) coal combustion residual (CCR) unit were initially established for the Uppermost Useable Aquifer in the January 15, 2018 Technical Memorandum titled "Background Statistical Evaluation" pursuant to the United States Environmental Protection Agency's (U.S. EPA's) Resource Conservation and Recovery Act (RCRA) Federal Final Rule for Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities (herein after "the CCR Rule") promulgated on April 17, 2015, as amended. As described in the initial statistical limit calculation, background was established under a constrained schedule that captured limited natural temporal trends in groundwater quality. In addition, DTE Electric has since updated the Hydrogeological Monitoring Plan for the DTE Electric Company Range Road Ash Disposal Facility (2020 HMP) (TRC, November 2019, Revised May 2020), to provide a means to comply with applicable monitoring requirements described in the Part 115 of the Natural Resources and Environmental Protection Act, PA 451 of 1994, as amended (Part 115) and the CCR Rule. The HMP was approved by the Michigan Department of Environment, Great Lakes, and Energy (EGLE) on May 15, 2020 to replace the March 2009 HMP.

As such, DTE Electric is updating the background statistical limits for the RRLF Uppermost Useable Aquifer monitoring wells to include the additional rounds of semiannual monitoring data collected and incorporate additional temporal variability observed subsequent to the initial statistical limit calculation in 2017. This memorandum presents the updated background statistical limits derived for the RRLF Uppermost Useable Aquifer monitoring wells.

Per the Uppermost Useable Aquifer Groundwater Monitoring System Summary Report (TRC, October 2017, revised April 2020), the groundwater monitoring system for the RRLF consists of the following locations for detection monitoring:

- MW-16-01
- MW-16-02

MW-16-05

MW-16-03

MW-16-04

■ MW-16-06

MW-16-07

And, per the HMP, statistical analysis is performed for the following detection monitoring parameters:

Boron

Fluoride

Calcium

Chloride

■ Iron

- ∎ pH
- Sulfate
 Total Dissolved Solids (TDS)

Due to the limited implementation timeline of the CCR Rule, background data was collected during sampling events spaced one to two months apart to allow the minimum of eight sampling events to be completed before October 17, 2017. The short duration of the background sampling events limits the ability of the statistical analysis to capture the natural temporal variations in the groundwater quality at the RRLF Uppermost Useable Aquifer. This limited temporal variability can only be corrected with the collection of additional groundwater data, and the inclusion of the additional data in the background data set updated in the future, as long as data continue to show no impacts from the CCR unit. As a result of site-specific geologic conditions presented in the 2017, 2018, 2019, and 2020 Annual Reports (TRC, January 2018, January 2019, January 2020, and January 2021), downward migration of CCR leachate is not expected due to the presence of the underlying clay, and groundwater data continue to show no impacts from the CCR unit. Therefore, the seven additional rounds of detection monitoring data and the verification sample results¹ have been incorporated into the background dataset and the prediction limit calculations have been updated using data collected from August 2016 through October 2020 as detailed below, with the exception of iron. Iron was recently added to the monitoring program to align with Part 115. Background limits for iron will be calculated once a minimum of eight background data points have been collected.

The background data for the RRLF were evaluated in accordance with the *Uppermost Useable Aquifer Groundwater Statistical Evaluation Plan* (Stats Plan) (TRC, October 2017, Revised April 2020). Background data were evaluated in ChemStat[™] statistical software. ChemStat[™] is a software tool that is commercially available for performing statistical evaluation consistent with procedures outlined in U.S. EPA's Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities (Unified Guidance; UG). Within the ChemStat[™] statistical program (and the UG), prediction limits (PLs) were selected to perform the statistical calculation for background limits. Use of PLs is recommended by the UG to provide high statistical power and is an acceptable approach for intrawell detection monitoring under the CCR Rule. PLs were calculated for each of the constituents included in Appendix III of the CCR Rule (total boron, total calcium, chloride, fluoride, pH, sulfate, and total dissolved solids)². The following narrative describes the methods employed and the results obtained. The ChemStat[™] output files are included as an attachment.

The set of background wells utilized for RRLF CCR Unit includes MW 16-01 through MW-16-07. The background evaluation included the following steps:

¹ Verification sampling results used to confirm or deny potential statistically significant increases (SSIs) have been averaged with the compliance sample results for statistical limit calculation.

² The Stats Plan includes total iron as a detection monitoring constituent. Per the Stats Plan, the background sampling period is a minimum of eight events. Background limits for iron will be calculated following the collection of eight rounds of background data. Only two rounds of data have been collected for iron to date; therefore, background limits were not calculated.

- Review of data quality checklists for the baseline/background data sets for CCR Appendix III constituents;
- Graphical representation of the baseline data as time versus concentration (T v. C) by well/constituent pair;
- Outlier testing of individual data points that appear from the graphical representations as potential outliers;
- Evaluation of percentage of non-detects for each baseline/background well-constituent (w/c) pair;
- Distribution of the data; and
- Calculation of the upper PLs for each cumulative baseline/background data set (upper and lower PLs were calculated for field pH).

The results of these evaluations are presented and discussed below.

Data Quality

Data from each sampling round were evaluated for completeness, overall quality and usability, methodspecified sample holding times, precision and accuracy, and potential sample contamination. The review was completed using the following quality control (QC) information which at a minimum included chain-of-custody forms, investigative sample results including blind field duplicates, and, as provided by the laboratory, method blanks, laboratory control spikes, laboratory duplicates. The data were found to be complete and usable for the purposes of the CCR monitoring program.

Time versus Concentration Graphs

The time versus concentration (T v. C) graphs (Attachment A) show potential or suspect outliers for one or more of the Appendix III parameters at MW-16-07 on 3/2/2017, 4/19/2017, and 6/8/2017.

While variations in results are present, the graphs show consistent baseline data and do not suggest that data sets, as a whole, likely have overall trending or seasonality. However, due to limitations on CCR Rule implementation timelines, the data sets are of relatively short duration for making such observations regarding overall trending or seasonality.

Outlier Testing

Outlier removal from the background data set is summarized in Table 1. Probability plots (Attachment A) were used to further evaluate the potential outliers in the Appendix III data for MW-16-07 that were identified in the T v. C graphs (Attachment A). In general, probability plots of the data residuals show that data collected on 3/2/2017, 4/19/2017, and 6/8/2017 were from a different distribution than the remaining data. This pattern was observed for most of the Appendix III parameters for MW-16-07. Prior to outlier removal, most of the parameters for MW-16-07 exhibited a non-normal distribution. The data sets for most of the parameters exhibited a normal distribution after the removal of these outliers. As such, data collected from monitoring well MW-16-07 on 3/2/2017, 4/19/2017, and 6/8/2017 were removed from the background data set used to calculate the statistical limit.

Technical Memorandum

Distribution of the Data Sets

ChemStat[™] was utilized to evaluate each data set for normality. If the skewness coefficient was calculated to be between negative one and one, then the data were assumed to be approximately normally distributed. If the skewness coefficient was calculated as greater than one (or less than negative one) then the calculation was performed on the natural log (Ln) of the data. If the Ln of the data still determined that the data appeared to be skewed, then the Shapiro-Wilk test of normality (Shapiro-Wilk) was performed. The Shapiro-Wilk statistic was calculated on both non-transformed data, and the Ln-transformed data. If the Shapiro-Wilk statistic indicated that normal distributional assumptions were not valid, then the parameter was considered a candidate for non-parametric statistical evaluation. The data distributions are summarized in Table 2.

Prediction Limits

Table 2 presents the calculated PLs for the background/baseline data sets. For normal and lognormal distributions, PLs are calculated for 95 percent confidence using parametric methods. For nonnormal background datasets, a nonparametric PL is utilized, resulting in the highest value from the background dataset as the PL. The achieved confidence levels for nonparametric prediction limits depend entirely on the number of background data points, which are shown in the ChemStat[™] outputs. Verification resampling (1 of 2) is recommended per the Stats Plan and UG to achieve performance standards specified in the CCR Rule.

Attachments

Table 1 – Summary of Outlier Evaluation Table 2 – Summary of Descriptive Statistics and Prediction Limit Calculations Attachment A – ChemStat[™] Prediction Limit Outputs

Tables

Table 1Summary of Outlier EvaluationDTE Electric Company – Range Road Landfill

Parameter	Units	Monitoring Well	Sample Date	Data Outlier	Basis for Removal of Outlier		
		MW-16-07	03/02/17	230			
Boron	ug/L	MW-16-07	04/19/17	120			
		MW-16-07	06/08/17	190			
		MW-16-07	03/02/17	160,000			
Calcium	ug/L	MW-16-07	04/19/17	170,000			
		MW-16-07	06/08/17	150,000			
		MW-16-07	03/02/17	41			
Chloride	mg/L	MW-16-07	04/19/17	40			
		MW-16-07	06/08/17	64	Time version stration stanks and probability plate		
	mg/L	MW-16-07	03/02/17	0.33	Time vs. concentration graphs and probability plots indicate that data are anomalous for most of the		
Fluoride		MW-16-07	04/19/17	0.31			
		MW-16-07	06/08/17	< 0.50	parameters analyzed during these sampling events at MW-16-07.		
	SU	MW-16-07	03/02/17	7.37			
pH, Field		MW-16-07	04/19/17	7.41			
		MW-16-07	06/08/17	7.48			
		MW-16-07	03/02/17	290			
Sulfate	mg/L	MW-16-07	04/19/17	260			
		MW-16-07	06/08/17	270			
		MW-16-07	03/02/17	910			
Total Dissolved Solids	mg/L	MW-16-07	04/19/17	720			
		MW-16-07	06/08/17	760			

Table 2 Summary of Descriptive Statistics and Prediction Limit Calculations DTE Electric Company – Range Road Landfill

Monitoring	Skewness Test		Shapiro-W (5% Critic	Outliers	Prediction Limit	Prediction	
Well	Un-Transformed Data	ansformed Data Natural Log Transformed Data Un-Transformed Data Natural Log Transformed Data		Removed	Test	Limit	
Appendix III							
Boron (ug/L	_)						
MW-16-01	-1 < -0.0680414 < 1				Ν	Parametric	620
MW-16-02	-1.29879 < -1	-1.34788 < -1	0.887 > 0.641665	0.887 > 0.635714	N	Non-Parametric	1,200
MW-16-03	-1 < -0.924486 < 1				N	Parametric	1,300
MW-16-04	-1 < 0.0121214 < 1				N	Parametric	1,200
MW-16-05	-1 < -0.485311 < 1				N	Parametric	1,400
MW-16-06	-1 < -0.588193 < 1				N	Parametric	1,200
MW-16-07	-1.04168 < -1	-1.25786 < -1	0.892 < 0.92156		Y	Parametric	980
Calcium (ug	g/L)		•				
MW-16-01	-1 < 0.210916 < 1				N	Parametric	87,000
MW-16-02	-1 < -0.55517 < 1				N	Parametric	24,000
MW-16-03	1 < 2.75228	1 < 2.44456	0.887 > 0.606759	0.887 > 0.661946	N	Non-Parametric	28,000
MW-16-04	-1 < -0.407028 < 1				N	Parametric	68,000
MW-16-05	-1.28621 < 1	-1.4875 < -1	0.887 > 0.677722	0.887 > 0.664542	N	Non-Parametric	19,000
MW-16-06	-1 < 0.470455 < 1				N	Parametric	34,000
MW-16-07	-1 < 0.423203 < 1				Y	Parametric	59,000
Chloride (m	g/L)						*
MW-16-01	-1 < -0.21742 < 1				N	Parametric	770
MW-16-02	-1 < -0.206976 < 1				N	Parametric	720
MW-16-03	-1 < -0.0289627 < 1				N	Parametric	580
MW-16-04	-1 < -0.358438 < 1				N	Parametric	3,600
MW-16-05	-1 < -0.0223709 < 1				N	Parametric	630
MW-16-06	-1 < -0.369595 < 1				N	Parametric	580
MW-16-07	-1.49399 < -1	-1.82389 < -1	0.892 > 0.826736	0.892 > 0.775702	Y	Non-Parametric	380
Fluoride (m	g/L)						
MW-16-01	-1.47268 < -1	-1.62785 < -1	0.887 > 0.847147	0.887 > 0.820561	N	Non-Parametric	0.90
MW-16-02	-1 < -0.775096 < 1				N	Parametric	2.1
MW-16-03	-1.21268 < -1	1.30559 < -1	0.887 > 0.778413	0.887 > 0.769587	N	Non-Parametric	2.2
MW-16-04	-1 < -0.168294 < 1				N	Parametric	1.7
MW-16-05	-1 < -0.741358 < 1				N	Parametric	2.0
MW-16-06	-1.57185 < -1	-1.65111 < -1	0.887 > 0.648129	0.887 > 0.636114	N	Non-Parametric	1.5
MW-16-07	-1 < '-0.739376 < 1				Y	Parametric	1.3

Notes:

2.14275 > 1

Skewness Coefficient

-1 < 0.537721 < 1

Shapiro-Wilks 5% . Critical Value

0.818 > 0.781314

Shapiro-Wilks 'W' Statistic

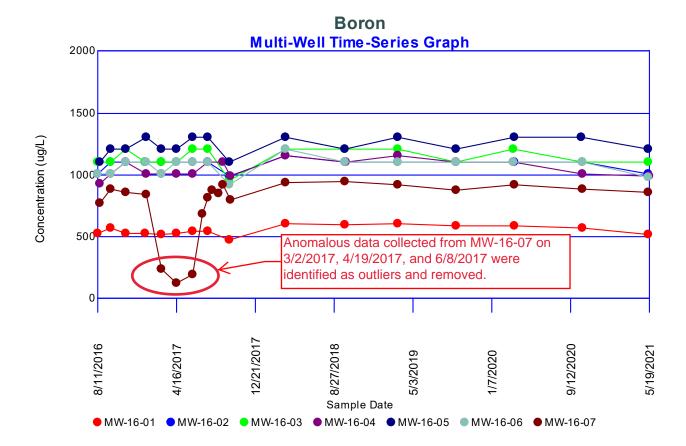
ug/L = micrograms per liter mg/L = milligrams per liter SU = standard units

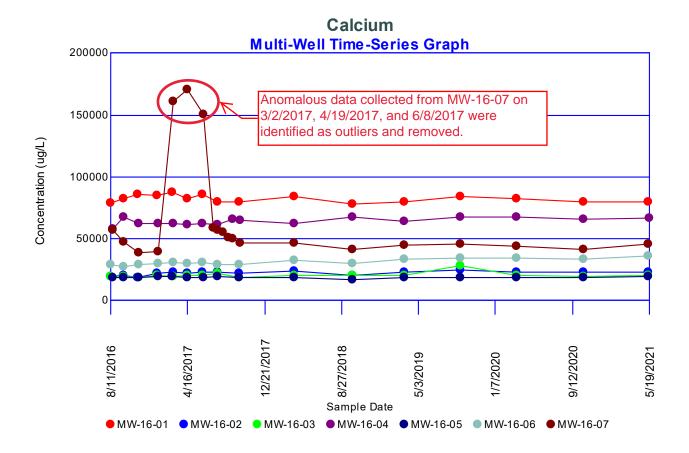
Table 2 Summary of Descriptive Statistics and Prediction Limit Calculations DTE Electric Company – Range Road Landfill

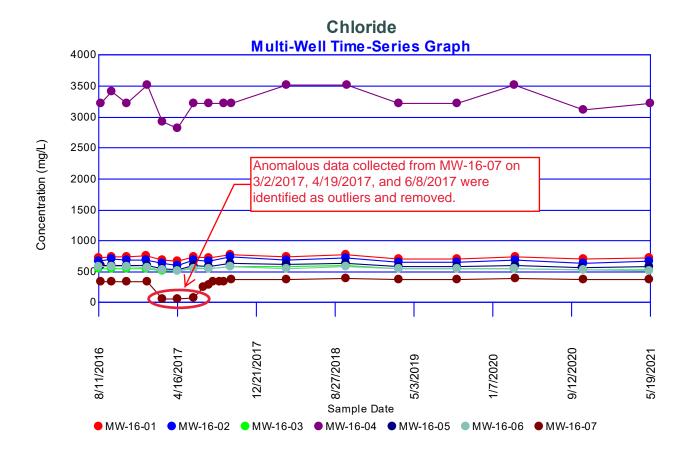
Monitoring	Skewness Test		Shapiro-V (5% Critic	Outliers	Prediction Limit	Prediction		
Well	Un-Transformed Data	Natural Log Transformed Data	Un-Transformed Data	Natural Log Transformed Data	Removed	Test	Limit	
pH, Field (S	iU)							
MW-16-01	-1 < 0.36183 < 1				Ν	Parametric	7.1 - 8.2	
MW-16-02	1 < 2.41425	1 < 2.34693	0.887 > 0.682233	0.887 > 0.694457	N	Non-Parametric	8.2 - 9.0	
MW-16-03	1 < 2.37546	1 < 2.31227	0.887 > 0.685816	0.887 > 0.698101	Ν	Non-Parametric	8.0 - 8.8	
MW-16-04	-1 < -0.829411 < 1				Ν	Parametric	7.6 - 8.6	
MW-16-05	1 < 2.30589	1 < 2.21955	0.887 > 0.735057	0.887 > 0.750874	Ν	Non-Parametric	8.0 - 8.9	
MW-16-06	-1 < 0.409927 < 1				Ν	Parametric	7.6 - 8.3	
MW-16-07	-1 < 0.225935 < 1				Y	Parametric	7.3 - 8.4	
Sulfate (mg	Sulfate (mg/L)							
MW-16-01	-1 < 0.362098 < 1				N	Parametric	45	
MW-16-02	> 50% Non-Detect				Ν	Non-Parametric	10	
MW-16-03	> 50% Non-Detect				N	Non-Parametric	10	
MW-16-04	> 50% Non-Detect				Ν	Non-Parametric	50	
MW-16-05	1 < 1.35571	-1 < -0.55014 < 1			N	Parametric	10	
MW-16-06	-1 < 0.20805 <1				Ν	Parametric	54	
MW-16-07	1 < 2.24946	-1 < 0.410858 < 1			Y	Parametric	74	
Total Disso	Ived Solids (mg/L)							
MW-16-01	-1 < 0 <1				N	Parametric	1,300	
MW-16-02	-1 < -0.251976 < 1				Ν	Parametric	1,300	
MW-16-03	-1 < 0.0313701 < 1				Ν	Parametric	1,100	
MW-16-04	-1 < 0.0534119 < 1				Ν	Parametric	5,300	
MW-16-05	-1 < -0.372395 < 1				Ν	Parametric	1,200	
MW-16-06	-1 < 0.357082 < 1				Ν	Parametric	1,100	
MW-16-07	-1 < 0.870173 < 1				Y	Parametric	760	

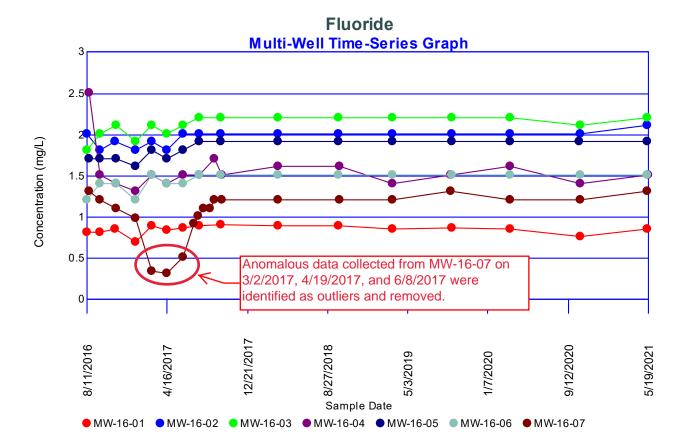
Notes:

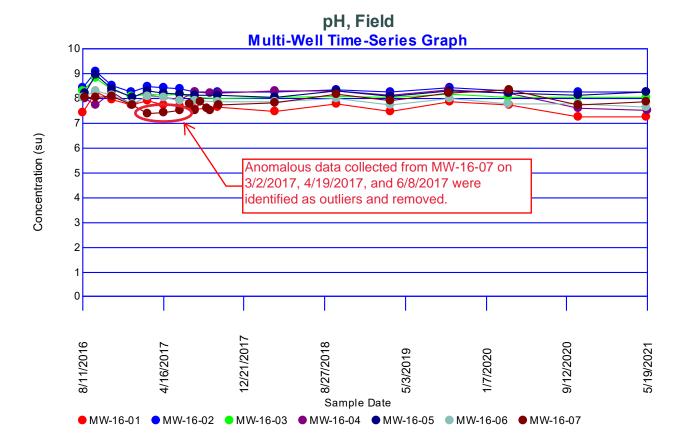
2.14275 > 1 -1 < 0.537721 < 1 **Skewness Coefficient**

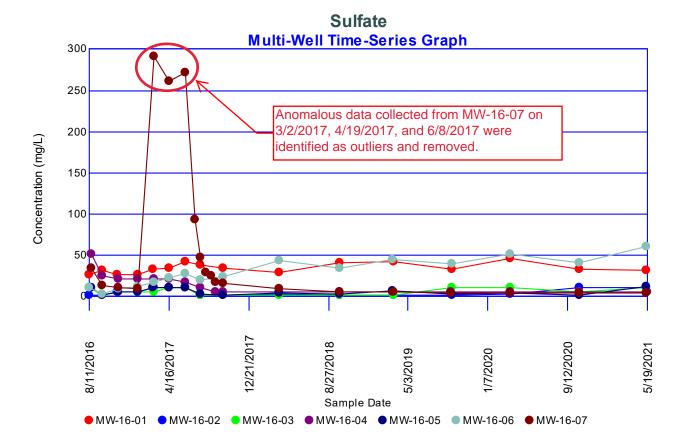

Shapiro-Wilks 5% Critical Value

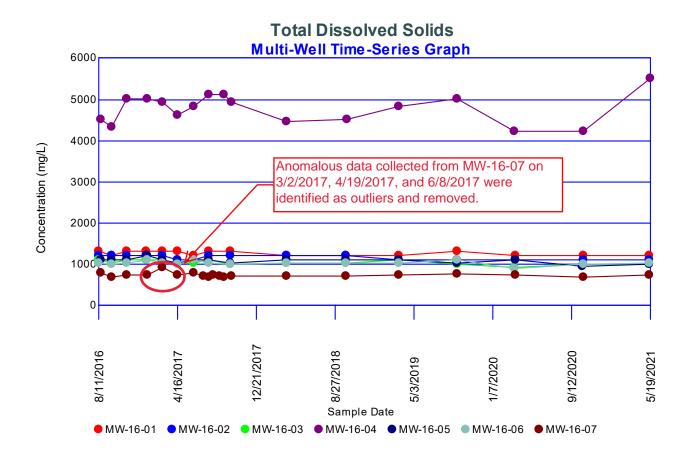

0.818 > 0.781314

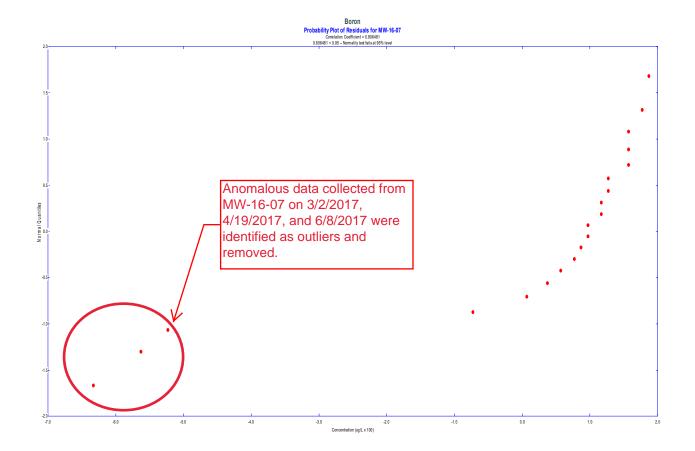

Shapiro-Wilks 'W' Statistic

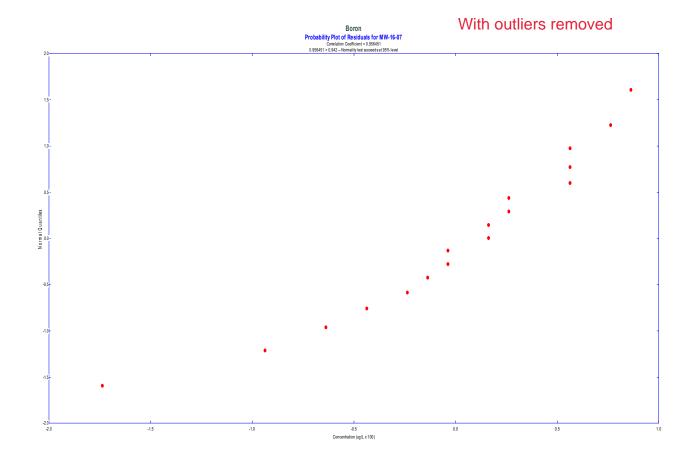

ug/L = micrograms per liter mg/L = milligrams per liter SU = standard units

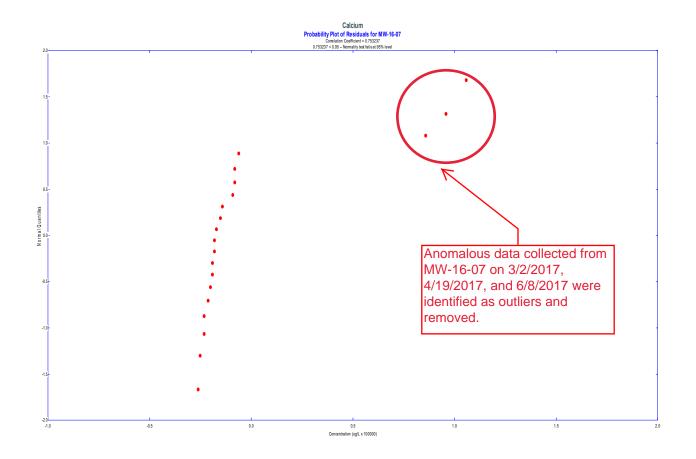

Attachment A ChemStat[™] Prediction Limit Outputs

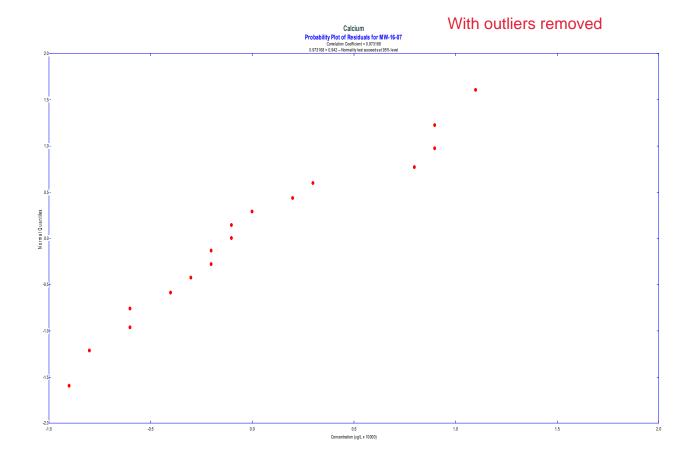


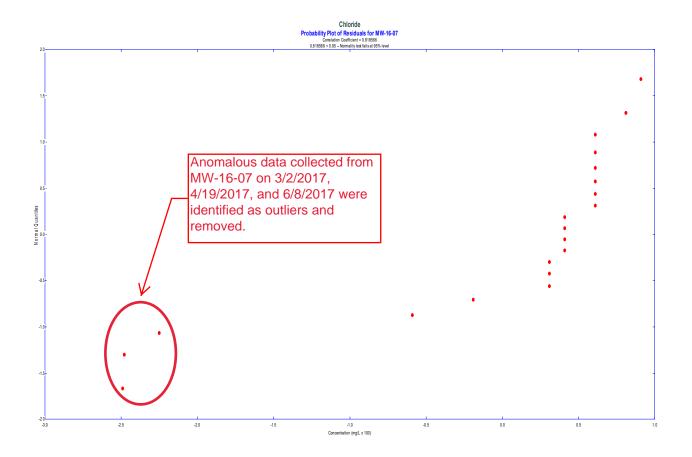


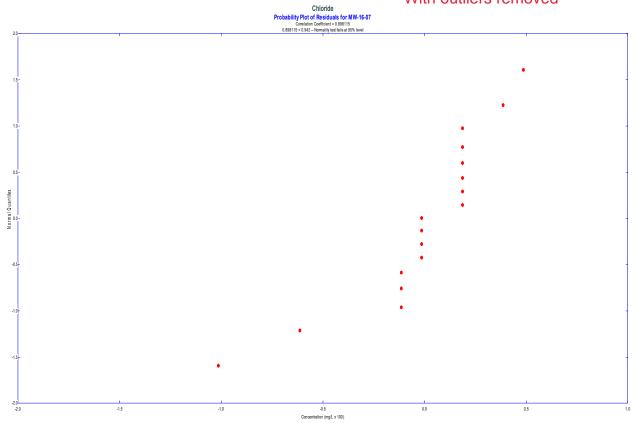


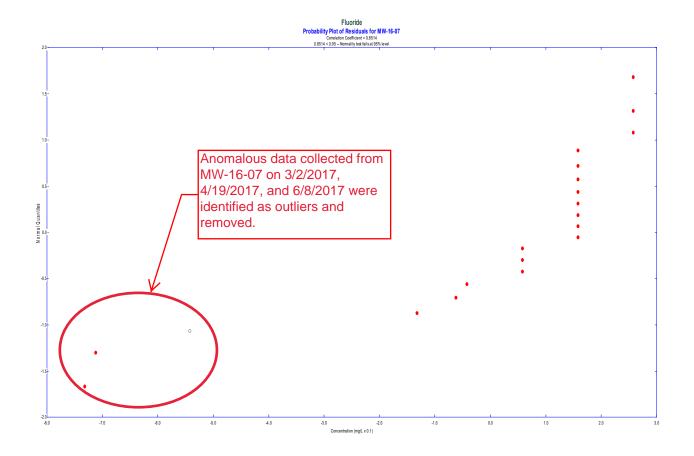


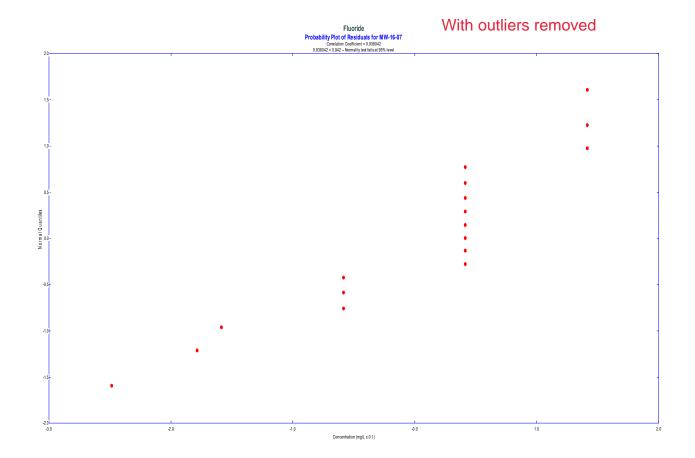


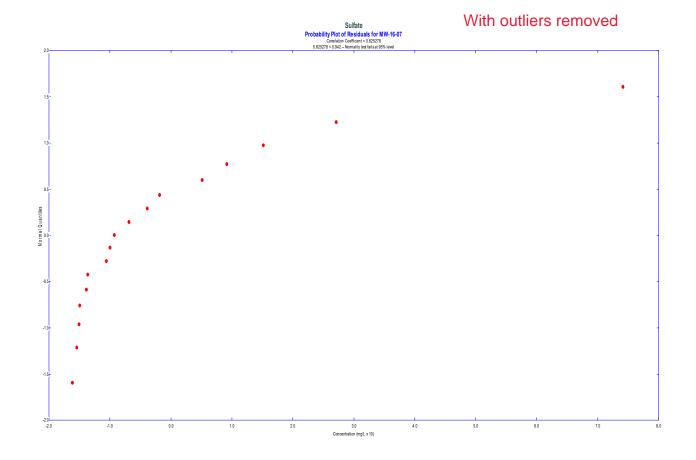











With outliers removed

Skewness Coefficient Parameter: Boron Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Location	Obs.	Mean	Std. Dev.	Skewness
MW-16-01	16	545	37.9473	-0.0680414
MW-16-02	16	1083.13	46.4354	-1.29879
MW-16-03	16	1134.38	70.0446	-0.924486
MW-16-04	17	1045.88	69.1067	0.0121214
MW-16-05	16	1231.25	70.4154	-0.485311
MW-16-06	16	1067.5	71.2273	-0.588193
MW-16-07	17	853.529	66.327	-1.04168

All Locations

Obs	. Mean	Std. Dev	v. Skewness
114	993.596	219.836	-0.974775

Skewness Coefficient Parameter: Boron Natural Logarithm Transformation Non-Detects Replaced with 1/2 DL

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Location	Obs.	Mean	Std. Dev.	Skewness
MW-16-01	16	6.29849	0.0700671	-0.188243
MW-16-02	16	6.98671	0.0441267	-1.34788
MW-16-03	16	7.03197	0.063834	-1.11867
MW-16-04	17	6.95056	0.0662376	-0.0637703
MW-16-05	16	7.11422	0.0581173	-0.569059
MW-16-06	16	6.97092	0.0683447	-0.745838
MW-16-07	17	6.74635	0.0815289	-1.25786
All Locatio	n 0			
	115			

Obs.	Mean	Std. Dev	. Skewness
114	6.87092	0.262934	-1.35043

Shapiro-Wilks Test of Normality Parameter: Boron Location: MW-16-02 Normality Test of Parameter Concentrations Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL K = 8 for 16 measurements

i 1	<mark>x(i)</mark> 980	<mark>x(n-i+1)</mark> 1150	x(n-1+1)-x(i) 170	a(n-i+1) 0.5056	<mark>b(i)</mark> 85.952
2	1000	1100	100	0.329	32.9
3	1000	1100	100	0.2521	25.21
4	1100	1100	0	0.1939	0
5	1100	1100	0	0.1447	0
6	1100	1100	0	0.1005	0
7	1100	1100	0	0.0593	0
8	1100	1100	0	0.0196	0
9	1100	1100	0		
10	1100	1100	0		
11	1100	1100	0		
12	1100	1100	0		
13	1100	1100	0		
14	1100	1000	-100		
15	1100	1000	-100		
16	1150	980	-170		

Sum of b values = 144.062 Sample Standard Deviation = 46.4354

W Statistic = 0.641665

5% Critical value of 0.887 exceeds 0.641665 Evidence of non-normality at 95% level of significance

1% Critical value of 0.844 exceeds 0.641665 Evidence of non-normality at 99% level of significance Shapiro-Wilks Test of Normality Parameter: Boron Location: MW-16-02 Normality Test of Parameter Concentrations Natural Logarithm Transformation Non-Detects Replaced with 1/2 DL K = 8 for 16 measurements

i	<mark>x(i)</mark>	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	<mark>b(i)</mark>
1	6.88755	7.04752	0.159965	0.5056	0.0808781
2	6.90776	7.00307	0.0953102	0.329	0.031357
3	6.90776	7.00307	0.0953102	0.2521	0.0240277
4	7.00307	7.00307	0	0.1939	0
5	7.00307	7.00307	0	0.1447	0
6	7.00307	7.00307	0	0.1005	0
7	7.00307	7.00307	0	0.0593	0
8	7.00307	7.00307	0	0.0196	0
9	7.00307	7.00307	0		
10	7.00307	7.00307	0		
11	7.00307	7.00307	0		
12	7.00307	7.00307	0		
13	7.00307	7.00307	0		
14	7.00307	6.90776	-0.0953102		
15	7.00307	6.90776	-0.0953102		
16	7.04752	6.88755	-0.159965		

Sum of b values = 0.136263 Sample Standard Deviation = 0.0441267 W Statistic = 0.635714

5% Critical value of 0.887 exceeds 0.635714 Evidence of non-normality at 95% level of significance

1% Critical value of 0.844 exceeds 0.635714 Evidence of non-normality at 99% level of significance

Shapiro-Wilks Test of Normality Parameter: Boron Location: MW-16-07 Normality Test of Parameter Concentrations Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL K = 8 for 17 measurements

i 1	x(i) 680	x(n-i+1) 940	x(n-1+1)-x(i) 260	a(n-i+1) 0.4968	<mark>b(i)</mark> 129.168
2	760	930	170	0.3273	55.641
3	790	910	120	0.254	30.48
4	810	910	100	0.1988	19.88
5	830	910	80	0.1524	12.192
6	840	880	40	0.1109	4.436
7	850	880	30	0.0725	2.175
8	850	870	20	0.0359	0.718
9	870	870	0		
10	870	850	-20		
11	880	850	-30		
12	880	840	-40		
13	910	830	-80		
14	910	810	-100		
15	910	790	-120		
16	930	760	-170		
17	940	680	-260		

Sum of b values = 254.69 Sample Standard Deviation = 66.327 W Statistic = 0.92156

5% Critical value of 0.892 is less than 0.92156 Data is normally distributed at 95% level of significance

1% Critical value of 0.851 is less than 0.92156 Data is normally distributed at 99% level of significance Parametric Prediction Interval Analysis Intra-Well Comparison for MW-16-01 Parameter: Boron Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Intra-Well Unified Guid. Formula 95% One-Sided Comparison

From 15 baseline Baseline mean = Baseline mean = Baseline std Dev For 1 recent sam Actual confidence t is Percentile of S Degrees of Freed t(0.95, 15) = 1.76	e samples 547.333 = 38.0726 pling event(s) e level is 1.0 - ((Student's T-Tes dom = 15 (backg	t (0.95/1) = 0.95	Result 520 560 520 B 520 510 520 540 540 470 600 590 600 580 580 580 560	
	Samples	Mean 510	Interval [0, 616.59]	Significant FALSE

Non-Parametric Prediction Interval Intra-Well Comparison for MW-16-02 Parameter: Boron Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Total Percent Non-Detects = 0% Future Samples (k) = 1 Recent Dates = 1 Baseline Measurements (n) = 15 Maximum Baseline Concentration = 1150 Confidence Level = 93.8% False Positive Rate = 6.2%

Baseline M	easurements	Date 8/11/2016 9/22/2016 11/9/2016 1/11/2017 3/2/2017 4/19/2017 6/7/2017 7/26/2017 10/3/2017 3/28/2018 ~ 10/3/2018 3/20/2019 9/18/2019 3/19/2020 10/20/2020	Value 1000 1100 B 1100 B 1100 1100 1100 1100 1100 980 1150 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100	
		10/20/2020		
Date 5/17/2021	Count 1	Mean 1000	Significant FALSE	

Parametric Prediction Interval Analysis Intra-Well Comparison for MW-16-03 Parameter: Boron Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Intra-Well Unified Guid. Formula 95% One-Sided Comparison

From 15 baseline Baseline mean = Baseline mean = Baseline std Dev For 1 recent sam Actual confidence t is Percentile of Degrees of Free t(0.95, 15) = 1.76	e samples = 1136.67 v = 71.8795 npling event(s) :e level is 1.0 - ((Student's T-Tes :dom = 15 (backg	,	Result 1100 1200 B 1100 1200 B 1100 1100 1200 1200 1200 1200 1200 1200 1200 1200 1200 1100 1200 1100	
Date	Samples	Mean	Interval	Significant
5/17/2021		1100	[0, 1267.42]	FALSE

Parametric Prediction Interval Analysis Intra-Well Comparison for MW-16-04 Parameter: Boron Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

t is Percentile of	ne samples = 1050 ev = 69.1857 mpling event(s) ce level is 1.0 - (f Student's T-Tes edom = 16 (back	Date 8/19/2016 9/23/2016 11/10/2016 1/12/2017 3/2/2017 4/19/2017 6/7/2017 7/26/2017 9/12/2017 10/5/2018 3/19/2019 ~ 9/17/2019 3/18/2020 10/20/2020 0.05/1) = 95 % st (0.95/1) = 0.95 ground observation		
Date	Samples	Mean	Interval	Significant
5/19/2021		980	[0, 1175.02]	FALSE

Parametric Prediction Interval Analysis Intra-Well Comparison for MW-16-05 Parameter: Boron Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

t is Percentile of	ne samples = 1233.33 ev = 72.3747 mpling event(s) ce level is 1.0 - (i f Student's T-Tes edom = 15 (back		Result 1100 1200 B 1300 1200 1200 1200 1300 1300 1300 1300 1200 1300 1200 1300 1300 1300 1300	
Date	Samples	Mean	Interval	Significant
5/18/2021	1	1200	[0, 1364.99]	FALSE

Parametric Prediction Interval Analysis Intra-Well Comparison for MW-16-06 Parameter: Boron Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Actual confiden t is Percentile o	ne samples = 1074 ev = 68.6398 mpling event(s) ce level is 1.0 - (f Student's T-Tes edom = 15 (back	Date 8/11/2016 9/23/2016 11/10/2016 1/12/2017 3/2/2017 4/19/2017 6/7/2017 7/26/2017 10/3/2017 3/28/2018 10/3/2018 3/19/2019 9/19/2019 3/18/2020 10/20/2020 0.05/1) = 95 % st (0.95/1) = 0.95 ground observati		
Date	Samples	Mean	Interval	Significant
5/17/2021		970	[0, 1198.86]	FALSE

Parametric Prediction Interval Analysis Intra-Well Comparison for MW-16-07 Parameter: Boron Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

t is Percentile of	ne samples = 853.75 ev = 68.4957 mpling event(s) ce level is 1.0 - (i f Student's T-Tes edom = 16 (back	Date 8/19/2016 9/23/2016 11/10/2016 1/12/2017 7/10/2017 7/25/2017 8/10/2017 8/30/2017 9/12/2017 10/5/2017 3/29/2018 10/4/2018 3/20/2019 9/17/2019 3/19/2020 10/20/2020 0.05/1) = 95 % st (0.95/1) = 0.95 ground observati	Result 760 880 850 B 830 680 B 810 870 840 910 790 930 940 910 870 910 870 910 880	
Date	Samples	Mean	Interval	Significant
5/18/2021	1	850	[0, 977.522]	FALSE

Skewness Coefficient Parameter: Calcium Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Location	Obs.	Mean	Std. Dev.	Skewness
MW-16-01	16	81468.8	2963.49	0.210916
MW-16-02	16	21312.5	1493.04	-0.55517
MW-16-03	16	20031.3	2148.4	2.75228
MW-16-04	17	63529.4	2808.86	-0.407028
MW-16-05	16	18125	718.795	-1.28621
MW-16-06	16	30406.3	2615.46	0.470455
MW-16-07	17	47000	6184.66	0.423203

Obs.	Mean	Std. Dev.	Skewness
114	40530.7	23024.9	0.648155

Skewness Coefficient Parameter: Calcium Natural Logarithm Transformation Non-Detects Replaced with 1/2 DL

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Location	Obs.	Mean	Std. Dev.	Skewness
MW-16-01	16	11.3074	0.0362732	0.167474
MW-16-02	16	9.96467	0.0718039	-0.737549
MW-16-03	16	9.90045	0.0953488	2.44456
MW-16-04	17	11.0583	0.0446945	-0.513296
MW-16-05	16	9.80428	0.0407919	-1.4875
/W-16-06	16	10.319	0.0847012	0.404542
MW-16-07	17	10.7499	0.129682	0.246185

Obs.	Mean	Std. Dev.	Skewness
114	10.4515	0.562819	0.266144

Shapiro-Wilks Test of Normality Parameter: Calcium Location: MW-16-03 Normality Test of Parameter Concentrations Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

K = 8 for 16 measurements

i i	x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
1	18000	27500	9500	0.5056	4803.2
2	18000	21000	3000	0.329	987
3	19000	20000	1000	0.2521	252.1
4	19000	20000	1000	0.1939	193.9
5	19000	20000	1000	0.1447	144.7
6	19000	20000	1000	0.1005	100.5
7	20000	20000	0	0.0593	0
8	20000	20000	0	0.0196	0
9	20000	20000	0		
10	20000	20000	0		
11	20000	19000	-1000		
12	20000	19000	-1000		
13	20000	19000	-1000		
14	20000	19000	-1000		
15	21000	18000	-3000		
16	27500	18000	-9500		

Sum of b values = 6481.4

Sample Standard Deviation = 2148.4 W Statistic = 0.606759

5% Critical value of 0.887 exceeds 0.606759 Evidence of non-normality at 95% level of significance

1% Critical value of 0.844 exceeds 0.606759 Evidence of non-normality at 99% level of significance Shapiro-Wilks Test of Normality Parameter: Calcium Location: MW-16-03 Normality Test of Parameter Concentrations Natural Logarithm Transformation Non-Detects Replaced with 1/2 DL

K = 8 for 16 measurements

i i	x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
1	9.79813	10.2219	0.423814	0.5056	0.21428
2	9.79813	9.95228	0.154151	0.329	0.0507156
3	9.85219	9.90349	0.0512933	0.2521	0.012931
4	9.85219	9.90349	0.0512933	0.1939	0.00994577
5	9.85219	9.90349	0.0512933	0.1447	0.00742214
6	9.85219	9.90349	0.0512933	0.1005	0.00515498
7	9.90349	9.90349	0	0.0593	0
8	9.90349	9.90349	0	0.0196	0
9	9.90349	9.90349	0		
10	9.90349	9.90349	0		
11	9.90349	9.85219	-0.0512933		
12	9.90349	9.85219	-0.0512933		
13	9.90349	9.85219	-0.0512933		
14	9.90349	9.85219	-0.0512933		
15	9.95228	9.79813	-0.154151		
16	10.2219	9.79813	-0.423814		

Sum of b values = 0.30045 Sample Standard Deviation = 0.0953488 W Statistic = 0.661946

5% Critical value of 0.887 exceeds 0.661946 Evidence of non-normality at 95% level of significance

1% Critical value of 0.844 exceeds 0.661946 Evidence of non-normality at 99% level of significance Shapiro-Wilks Test of Normality Parameter: Calcium Location: MW-16-05 Normality Test of Parameter Concentrations Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

K = 8 for 16 measurements

i	x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
1	16000	19000	3000	0.5056	1516.8
2	18000	19000	1000	0.329	329
3	18000	19000	1000	0.2521	252.1
4	18000	19000	1000	0.1939	193.9
5	18000	18000	0	0.1447	0
6	18000	18000	0	0.1005	0
7	18000	18000	0	0.0593	0
8	18000	18000	0	0.0196	0
9	18000	18000	0		
10	18000	18000	0		
11	18000	18000	0		
12	18000	18000	0		
13	19000	18000	-1000		
14	19000	18000	-1000		
15	19000	18000	-1000		
16	19000	16000	-3000		

Sum of b values = 2291.8 Sample Standard Deviation = 718.795 W Statistic = 0.677722

5% Critical value of 0.887 exceeds 0.677722 Evidence of non-normality at 95% level of significance

1% Critical value of 0.844 exceeds 0.677722 Evidence of non-normality at 99% level of significance Shapiro-Wilks Test of Normality Parameter: Calcium Location: MW-16-05 Normality Test of Parameter Concentrations Natural Logarithm Transformation Non-Detects Replaced with 1/2 DL K = 8 for 16 measurements

i	x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
1	9.68034	9.85219	0.17185	0.5056	0.0868875
2	9.79813	9.85219	0.0540672	0.329	0.0177881
3	9.79813	9.85219	0.0540672	0.2521	0.0136303
4	9.79813	9.85219	0.0540672	0.1939	0.0104836
5	9.79813	9.79813	0	0.1447	0
6	9.79813	9.79813	0	0.1005	0
7	9.79813	9.79813	0	0.0593	0
8	9.79813	9.79813	0	0.0196	0
9	9.79813	9.79813	0		
10	9.79813	9.79813	0		
11	9.79813	9.79813	0		
12	9.79813	9.79813	0		
13	9.85219	9.79813	-0.0540672		
14	9.85219	9.79813	-0.0540672		
15	9.85219	9.79813	-0.0540672		
16	9.85219	9.68034	-0.17185		

Sum of b values = 0.12879 Sample Standard Deviation = 0.0407919 W Statistic = 0.664542

5% Critical value of 0.887 exceeds 0.664542 Evidence of non-normality at 95% level of significance

1% Critical value of 0.844 exceeds 0.664542 Evidence of non-normality at 99% level of significance Parametric Prediction Interval Analysis Intra-Well Comparison for MW-16-01 Parameter: Calcium Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

From 15 baseline Baseline mean = Baseline mean = Baseline std Dev For 1 recent samp Actual confidence t is Percentile of S Degrees of Freed t(0.95, 15) = 1.76	e samples 81633.3 = 2990.86 pling event(s) e level is 1.0 - ((Student's T-Tes fom = 15 (backg	t (0.95/1) = 0.95		
Date	Samples	Mean	Interval	Significant
5/17/2021 1		79000	[0, 87073.9]	FALSE

Parametric Prediction Interval Analysis Intra-Well Comparison for MW-16-02 Parameter: Calcium Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

t is Percentile of	ne samples = 21266.7 ev = 1533.75 mpling event(s) ce level is 1.0 - (f Student's T-Te edom = 15 (back	Date 8/11/2016 9/22/2016 11/9/2016 1/11/2017 3/2/2017 4/19/2017 6/7/2017 7/26/2017 10/3/2017 3/28/2018 10/3/2018 3/20/2019 9/18/2019 ~ 3/19/2020 10/20/2020 (0.05/1) = 95 % st (0.95/1) = 0.95 ground observat		
Date	Samples	Mean	interval	Significant
5/17/2021		22000	[0, 24056.7]	FALSE

Non-Parametric Prediction Interval Intra-Well Comparison for MW-16-03 Parameter: Calcium Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Total Percent Non-Detects = 0% Future Samples (k) = 1 Recent Dates = 1 Baseline Measurements (n) = 15 Maximum Baseline Concentration = 27500 Confidence Level = 93.8% False Positive Rate = 6.2%

Baseline M	leasurements	Date 8/11/2016 9/22/2016 11/10/2016 1/11/2017 3/2/2017 4/19/2017 6/7/2017 7/26/2017 10/3/2017 3/28/2018 10/3/2018 3/20/2019 9/18/2019 ~ 3/18/2020 10/20/2020	Value 19000 19000 18000 20000 20000 20000 21000 18000 20000 20000 20000 27500 20000 19000	
Date 5/17/2021	Count	Mean 20000	Significant FALSE	

Parametric Prediction Interval Analysis Intra-Well Comparison for MW-16-04 Parameter: Calcium Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Non-Parametric Prediction Interval Intra-Well Comparison for MW-16-05 Parameter: Calcium Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Total Percent Non-Detects = 0% Future Samples (k) = 1 Recent Dates = 1 Baseline Measurements (n) = 15 Maximum Baseline Concentration = 19000 Confidence Level = 93.8% False Positive Rate = 6.2%

Baseline M	leasurements	Date 8/19/2016 9/22/2016 11/10/2016 1/12/2017 3/1/2017 4/19/2017 6/8/2017 7/26/2017 10/3/2017 3/29/2018 10/3/2018 3/19/2019 9/19/2020 10/19/2020	Value 18000 18000 18000 19000 19000 18000 18000 18000 18000 18000 18000 18000 18000 18000 18000 18000 18000 18000 18000 18000	
Date 5/18/2021	Count	Mean 19000	Significant FALSE	

Parametric Prediction Interval Analysis Intra-Well Comparison for MW-16-06 Parameter: Calcium Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Actual confiden t is Percentile o	ne samples = 30100 ev = 2391.95 mpling event(s) ce level is 1.0 - (f Student's T-Tes edom = 15 (back	Date 8/11/2016 9/23/2016 11/10/2016 1/12/2017 3/2/2017 4/19/2017 6/7/2017 7/26/2017 10/3/2018 ~ 10/3/2018 ~ 10/3/2018 ~ 10/3/2019 ~ 9/19/2019 ~ 9/19/2019 ~ 3/18/2020 10/20/2020 0.05/1) = 95 % st (0.95/1) = 0.95 ground observation		
<mark>Date</mark>	Samples	<mark>Mean</mark>	interval	Significant
5/17/2021	1	35000	[0, 34451.1]	TRUE

Parametric Prediction Interval Analysis Intra-Well Comparison for MW-16-07 Parameter: Calcium Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Date	Samples	Mean	Interval	5
Actual confic t is Percentil	sampling event(s lence level is 1.0 e of Student's T-T Freedom = 16 (bac 1.75305	- (0.05/1) = 95 % est (0.95/1) = 0.9		
Baseline me	eline samples an			
		10/20/2020	41000	
		3/19/2020	43000	
		9/17/2019	45000	
		3/20/2019	44000	
		10/4/2018	41000	
		3/29/2018	46000	
		10/5/2017	46000	
		9/12/2017	49000	
		8/30/2017	50000	
		7/25/2017 8/10/2017	56000 55000	
		7/10/2017	58000	
		1/12/2017	39000	
		11/10/2016	38000	
		9/23/2016	47000	
		8/19/2016	56000	
Baseline S	Samples	Date	Result	

Date	Samples	Mean	Interval	Significant
5/18/2021	1	45000	[0, 58627.1]	FALSE

Skewness Coefficient Parameter: Chloride Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Location	Obs.	Mean	Std. Dev.	Skewness
MW-16-01	16	711.875	29.9374	-0.21742
MW-16-02	16	656.875	35.1603	-0.206976
MW-16-03	16	536.563	23.5739	-0.0289627
MW-16-04	17	3235.29	199.816	-0.358438
MW-16-05	16	575.313	27.4146	-0.0223709
MW-16-06	16	536.875	24.6897	-0.369595
MW-16-07	17	331.176	35.6865	-1.49399

Ob	s. N	lean	Std. Dev.	Skewness
114	9	55.351	968.551	1.93391

Skewness Coefficient Parameter: Chloride Natural Logarithm Transformation Non-Detects Replaced with 1/2 DL

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Location	Obs.	Mean	Std. Dev.	Skewness
MW-16-01	16	6.56707	0.042318	-0.317154
MW-16-02	16	6.48614	0.0539986	-0.362477
MW-16-03	16	6.28428	0.0440598	-0.152941
MW-16-04	17	8.08004	0.0627027	-0.523481
MW-16-05	16	6.35385	0.047794	-0.146694
MW-16-06	16	6.28476	0.0464439	-0.435556
MW-16-07	17	5.79642	0.119133	-1.82389

All Locations

(Obs.	Mean	Std. Dev.	Skewness
1	14	6.55717	0.68384	1.42879

Shapiro-Wilks Test of Normality Parameter: Chloride Location: MW-16-07 Normality Test of Parameter Concentrations Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL K = 8 for 17 measurements

i	<mark>x(i)</mark>	<mark>x(n-i+1)</mark>	x(n-1+1)-x(i)	a(n-i+1) 0.4968	<mark>b(i)</mark> 74.52
1	230	380	150		74.52
2	270	370	100	0.3273	32.73
3	320	350	30	0.254	7.62
4	320	350	30	0.1988	5.964
5	320	350	30	0.1524	4.572
6	330	350	20	0.1109	2.218
7	330	350	20	0.0725	1.45
8	330	350	20	0.0359	0.718
9	330	330	0		
10	350	330	-20		
11	350	330	-20		
12	350	330	-20		
13	350	320	-30		
14	350	320	-30		
15	350	320	-30		
16	370	270	-100		
17	380	230	-150		

Sum of b values = 129.792 Sample Standard Deviation = 35.6865 W Statistic = 0.826736

5% Critical value of 0.892 exceeds 0.826736 Evidence of non-normality at 95% level of significance

1% Critical value of 0.851 exceeds 0.826736 Evidence of non-normality at 99% level of significance Shapiro-Wilks Test of Normality Parameter: Chloride Location: MW-16-07 Normality Test of Parameter Concentrations Natural Logarithm Transformation Non-Detects Replaced with 1/2 DL K = 8 for 17 measurements

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14	x(i) 5.43808 5.59842 5.76832 5.76832 5.76832 5.79909 5.79909 5.79909 5.79909 5.79909 5.85793 5.85793 5.85793 5.85793 5.85793 5.85793	x(n-i+1) 5.94017 5.9135 5.85793 5.85793 5.85793 5.85793 5.85793 5.85793 5.79909 5.79909 5.79909 5.79909 5.79909 5.79909 5.79909 5.76832 5.76832	x(n-1+1)-x(i) 0.502092 0.315081 0.0896122 0.0896122 0.0896122 0.0588405 0.0588405 0.0588405 0 -0.0588405 -0.0588405 -0.0588405 -0.0588405 -0.0588405 -0.0588405 -0.0588405 -0.0896122 -0.0896122	a(n-i+1) 0.4968 0.3273 0.254 0.1988 0.1524 0.1109 0.0725 0.0359	b(i) 0.249439 0.103126 0.0227615 0.0178149 0.0136569 0.00652541 0.00426594 0.00211237
12	5.85793	5.79909	-0.0588405		
16 17	5.9135 5.94017	5.59842 5.43808	-0.315081 -0.502092		

Sum of b values = 0.419702 Sample Standard Deviation = 0.119133 W Statistic = 0.775702

5% Critical value of 0.892 exceeds 0.775702 Evidence of non-normality at 95% level of significance

1% Critical value of 0.851 exceeds 0.775702 Evidence of non-normality at 99% level of significance Parametric Prediction Interval Analysis Intra-Well Comparison for MW-16-01 Parameter: Chloride Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

t is Percentile of	ne samples = 712.667 ev = 30.8143 mpling event(s) ce level is 1.0 - (f Student's T-Tes edom = 15 (back	Date 8/11/2016 9/22/2016 11/9/2016 1/11/2017 3/1/2017 4/19/2017 6/7/2017 7/26/2017 10/3/2018 3/20/2019 9/18/2019 3/19/2020 10/20/2020 0.05/1) = 95 % st (0.95/1) = 0.95 ground observati		
Date	Samples	Mean	Interval	Significant
5/17/2021		700	[0, 768.72]	FALSE

Parametric Prediction Interval Analysis Intra-Well Comparison for MW-16-02 Parameter: Chloride Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Actual confiden t is Percentile o	ne samples = 657.333 ev = 36.3449 mpling event(s) ice level is 1.0 - (if Student's T-Tes edom = 15 (back	st (0.95/1) = 0.95		
Date	Samples	Mean	Interval	Significant
5/17/2021		650	[0, 723.447]	FALSE

Parametric Prediction Interval Analysis Intra-Well Comparison for MW-16-03 Parameter: Chloride Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

t is Percentile of	ne samples = 537.667 ev = 23.9692 mpling event(s) ce level is 1.0 - (f Student's T-Tes edom = 15 (back	Date 8/11/2016 9/22/2016 11/10/2016 1/11/2017 3/2/2017 4/19/2017 6/7/2017 7/26/2017 10/3/2017 ~ 3/28/2018 10/3/2018 3/20/2019 9/18/2019 3/18/2020 10/20/2020 0.05/1) = 95 % st (0.95/1) = 0.95 ground observation		
Date	Samples	Mean	Interval	Significant
5/17/2021		520	[0, 581.268]	FALSE

Parametric Prediction Interval Analysis Intra-Well Comparison for MW-16-04 Parameter: Chloride Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

t is Percentile of	te samples = 3237.5 v = 206.155 npling event(s) ce level is 1.0 - ((f Student's T-Tes edom = 16 (backg		Result 3200 3400 3200 3500 2900 2800 3200 3200 3200 3200 3200 3200 3500 3500 3500 3500 3100
Date	Samples	Mean	Interval
5/19/2021		3200	[0, 3610.02]

)	Samples	Mean	Interval	Significant
2021	1	3200	[0, 3610.02]	FALSE

Parametric Prediction Interval Analysis Intra-Well Comparison for MW-16-05 Parameter: Chloride Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

t is Percentile of	ne samples = 576.333 ev = 28.0603 mpling event(s) ce level is 1.0 - (f Student's T-Te edom = 15 (back	Date 8/19/2016 9/22/2016 11/10/2016 1/12/2017 3/1/2017 4/19/2017 6/8/2017 7/26/2017 10/3/2017 3/29/2018 10/3/2018 ~ 3/19/2019 9/19/2019 3/19/2020 10/19/2020 10/19/2020 10/19/2020		
Date	Samples	<mark>Mean</mark>	Interval	Significant
5/18/2021		560	[0, 627.377]	FALSE

Parametric Prediction Interval Analysis Intra-Well Comparison for MW-16-06 Parameter: Chloride Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

t is Percentile of	ne samples = 539.333 ev = 23.4419 mpling event(s) ce level is 1.0 - (f Student's T-Tes edom = 15 (back	Date 8/11/2016 9/23/2016 11/10/2016 1/12/2017 3/2/2017 4/19/2017 6/7/2017 7/26/2017 10/3/2017 ~ 3/28/2018 10/3/2018 3/19/2019 9/19/2019 3/18/2020 10/20/2020 0.05/1) = 95 % st (0.95/1) = 0.95 ground observation		
Date	Samples	Mean	Interval	Significant
5/17/2021		500	[0, 581.976]	FALSE

Non-Parametric Prediction Interval Intra-Well Comparison for MW-16-07 Parameter: Chloride Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Total Percent Non-Detects = 0% Future Samples (k) = 1 Recent Dates = 1 Baseline Measurements (n) = 15 Maximum Baseline Concentration = 380 Confidence Level = 93.8% False Positive Rate = 6.2%

Baseline M	easurements	Date 8/19/2016 9/23/2016 11/10/2016 1/12/2017 7/10/2017 7/25/2017 8/10/2017 8/30/2017 9/12/2017 10/5/2017 ~ 3/29/2018 10/4/2018 3/20/2019 9/17/2019	Value 320 320 330 230 270 320 320 330 350 350 350 350 350 350 35	
Date 5/18/2021	Count	Mean 350	Significant FALSE	

Skewness Coefficient Parameter: Fluoride Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Compliance	Locations	5			
Location	Obs.	Mean	Std. Dev.	Skewness	
MW-16-01	16	0.83875	0.0543906	-1.47268	
MW-16-02	16	1.95625	0.0892095	-0.775096	
MW-16-03	16	2.10625	0.123659	-1.21268	
MW-16-04	17	1.47941	0.113273	-0.168294	
MW-16-05	16	1.81875	0.104682	-0.741358	
MW-16-06	16	1.4375	0.10247	-1.57185	
MW-16-07	17	1.15824	0.112596	-0.739376	

All Locations

Obs.	Mean	Std. Dev.	Skewness
114	1.53825	0.429495	-0.202644

Skewness Coefficient Parameter: Fluoride Natural Logarithm Transformation Non-Detects Replaced with 1/2 DL

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Location	Obs.	Mean	Std. Dev.	Skewness
MW-16-01	16	-0.177956	0.0683629	-1.62785
MW-16-02	16	0.67003	0.0464718	-0.835776
MW-16-03	16	0.743209	0.0610066	-1.30559
MW-16-04	17	0.388841	0.0775493	-0.367494
MW-16-05	16	0.596548	0.058891	-0.787719
MW-16-06	16	0.360324	0.0757287	-1.65111
MW-16-07	17	0.142181	0.10165	-0.917988

All Locations

Obs.	Mean	Std. Dev.	Skewness
114	0.386858	0.307854	-0.629819

Shapiro-Wilks Test of Normality Parameter: Fluoride Location: MW-16-01 Normality Test of Parameter Concentrations Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL K = 8 for 16 measurements

i	x(i)	x(n-i+1)	x(n-1+1)-x(i)		b(i)
1	0.69	0.9	0.21	0.5056	0.106176
2	0.75	0.89	0.14	0.329	0.04606
3	0.81	0.88	0.07	0.2521	0.017647
4	0.81	0.88	0.07	0.1939	0.013573
5	0.83	0.88	0.05	0.1447	0.007235
6	0.84	0.86	0.02	0.1005	0.00201
7	0.84	0.86	0.02	0.0593	0.001186
8	0.85	0.85	0	0.0196	0
9	0.85	0.85	0		
10	0.86	0.84	-0.02		
11	0.86	0.84	-0.02		
12	0.88	0.83	-0.05		
13	0.88	0.81	-0.07		
14	0.88	0.81	-0.07		
15	0.89	0.75	-0.14		
16	0.9	0.69	-0.21		

Sum of b values = 0.193887 Sample Standard Deviation = 0.0543906 W Statistic = 0.847147

5% Critical value of 0.887 exceeds 0.847147 Evidence of non-normality at 95% level of significance

1% Critical value of 0.844 is less than 0.847147 Data is normally distributed at 99% level of significance Shapiro-Wilks Test of Normality Parameter: Fluoride Location: MW-16-01 Normality Test of Parameter Concentrations Natural Logarithm Transformation Non-Detects Replaced with 1/2 DL

K = 8 for 16 measurements

i,	x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
1	-0.371064	-0.105361	0.265703	0.5056	0.13434
2	-0.287682	-0.116534	0.171148	0.329	0.0563078
3	-0.210721	-0.127833	0.0828877	0.2521	0.020896
4	-0.210721	-0.127833	0.0828877	0.1939	0.0160719
5	-0.18633	-0.127833	0.0584962	0.1447	0.0084644
6	-0.174353	-0.150823	0.0235305	0.1005	0.00236481
7	-0.174353	-0.150823	0.0235305	0.0593	0.00139536
8	-0.162519	-0.162519	0	0.0196	0
9	-0.162519	-0.162519	0		
10	-0.150823	-0.174353	-0.0235305		
11	-0.150823	-0.174353	-0.0235305		
12	-0.127833	-0.18633	-0.0584962		
13	-0.127833	-0.210721	-0.0828877		
14	-0.127833	-0.210721	-0.0828877		
15	-0.116534	-0.287682	-0.171148		
16	-0.105361	-0.371064	-0.265703		

Sum of b values = 0.23984 Sample Standard Deviation = 0.0683629 W Statistic = 0.820561

5% Critical value of 0.887 exceeds 0.820561 Evidence of non-normality at 95% level of significance

1% Critical value of 0.844 exceeds 0.820561 Evidence of non-normality at 99% level of significance Shapiro-Wilks Test of Normality Parameter: Fluoride Location: MW-16-03 Normality Test of Parameter Concentrations Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL K = 8 for 16 measurements

i,	x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
1	1.8	2.2	0.4	0.5056	0.20224
2	1.9	2.2	0.3	0.329	0.0987
3	2	2.2	0.2	0.2521	0.05042
4	2	2.2	0.2	0.1939	0.03878
5	2.1	2.2	0.1	0.1447	0.01447
6	2.1	2.2	0.1	0.1005	0.01005
7	2.1	2.2	0.1	0.0593	0.00593
8	2.1	2.2	0.1	0.0196	0.00196
9	2.2	2.1	-0.1		
10	2.2	2.1	-0.1		
11	2.2	2.1	-0.1		
12	2.2	2.1	-0.1		
13	2.2	2	-0.2		
14	2.2	2	-0.2		
15	2.2	1.9	-0.3		
16	2.2	1.8	-0.4		

Sum of b values = 0.42255 Sample Standard Deviation = 0.123659 W Statistic = 0.778413

5% Critical value of 0.887 exceeds 0.778413 Evidence of non-normality at 95% level of significance

1% Critical value of 0.844 exceeds 0.778413 Evidence of non-normality at 99% level of significance Shapiro-Wilks Test of Normality Parameter: Fluoride Location: MW-16-03 Normality Test of Parameter Concentrations Natural Logarithm Transformation Non-Detects Replaced with 1/2 DL

K = 8 for 16 measurements

i	x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
1	0.587787	0.788457	0.200671	0.5056	0.101459
2	0.641854	0.788457	0.146603	0.329	0.0482325
3	0.693147	0.788457	0.0953102	0.2521	0.0240277
4	0.693147	0.788457	0.0953102	0.1939	0.0184806
5	0.741937	0.788457	0.04652	0.1447	0.00673145
6	0.741937	0.788457	0.04652	0.1005	0.00467526
7	0.741937	0.788457	0.04652	0.0593	0.00275864
8	0.741937	0.788457	0.04652	0.0196	0.000911792
9	0.788457	0.741937	-0.04652		
10	0.788457	0.741937	-0.04652		
11	0.788457	0.741937	-0.04652		
12	0.788457	0.741937	-0.04652		
13	0.788457	0.693147	-0.0953102		
14	0.788457	0.693147	-0.0953102		
15	0.788457	0.641854	-0.146603		
16	0.788457	0.587787	-0.200671		

Sum of b values = 0.207277 Sample Standard Deviation = 0.0610066

W Statistic = 0.769587

5% Critical value of 0.887 exceeds 0.769587 Evidence of non-normality at 95% level of significance

1% Critical value of 0.844 exceeds 0.769587 Evidence of non-normality at 99% level of significance Shapiro-Wilks Test of Normality Parameter: Fluoride Location: MW-16-06 Normality Test of Parameter Concentrations Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL K = 8 for 16 measurements

i.	x(i)	x(n-i+1)	x(n-1+1)-x(i)		b(i)
1	1.2	1.5	0.3	0.5056	0.15168
2	1.2	1.5	0.3	0.329	0.0987
3	1.4	1.5	0.1	0.2521	0.02521
4	1.4	1.5	0.1	0.1939	0.01939
5	1.4	1.5	0.1	0.1447	0.01447
6	1.4	1.5	0.1	0.1005	0.01005
7	1.5	1.5	0	0.0593	0
8	1.5	1.5	0	0.0196	0
9	1.5	1.5	0		
10	1.5	1.5	0		
11	1.5	1.4	-0.1		
12	1.5	1.4	-0.1		
13	1.5	1.4	-0.1		
14	1.5	1.4	-0.1		
15	1.5	1.2	-0.3		
16	1.5	1.2	-0.3		

Sum of b values = 0.3195 Sample Standard Deviation = 0.10247 W Statistic = 0.648129

5% Critical value of 0.887 exceeds 0.648129 Evidence of non-normality at 95% level of significance

1% Critical value of 0.844 exceeds 0.648129 Evidence of non-normality at 99% level of significance Shapiro-Wilks Test of Normality Parameter: Fluoride Location: MW-16-06 Normality Test of Parameter Concentrations Natural Logarithm Transformation Non-Detects Replaced with 1/2 DL

K = 8 for 16 measurements

i	x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
1	0.182322	0.405465	0.223144	0.5056	0.112821
2	0.182322	0.405465	0.223144	0.329	0.0734142
3	0.336472	0.405465	0.0689929	0.2521	0.0173931
4	0.336472	0.405465	0.0689929	0.1939	0.0133777
5	0.336472	0.405465	0.0689929	0.1447	0.00998327
6	0.336472	0.405465	0.0689929	0.1005	0.00693378
7	0.405465	0.405465	0	0.0593	0
8	0.405465	0.405465	0	0.0196	0
9	0.405465	0.405465	0		
10	0.405465	0.405465	0		
11	0.405465	0.336472	-0.0689929		
12	0.405465	0.336472	-0.0689929		
13	0.405465	0.336472	-0.0689929		
14	0.405465	0.336472	-0.0689929		
15	0.405465	0.182322	-0.223144		
16	0.405465	0.182322	-0.223144		

Sum of b values = 0.233923 Sample Standard Deviation = 0.0757287 W Statistic = 0.636114

5% Critical value of 0.887 exceeds 0.636114 Evidence of non-normality at 95% level of significance

1% Critical value of 0.844 exceeds 0.636114 Evidence of non-normality at 99% level of significance Non-Parametric Prediction Interval Intra-Well Comparison for MW-16-01 Parameter: Fluoride Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Total Percent Non-Detects = 0% Future Samples (k) = 1 Recent Dates = 1 Baseline Measurements (n) = 15 Maximum Baseline Concentration = 0.9 Confidence Level = 93.8% False Positive Rate = 6.2%

Baseline Me	asurements	Date 8/11/2016 9/22/2016 11/9/2016 1/11/2017 3/1/2017 4/19/2017 6/7/2017 7/26/2017 10/3/2017 3/29/2018 10/3/2018 3/20/2019 9/18/2019 3/19/2020 10/20/2020	Value 0.81 0.81 0.85 0.69 0.89 0.83 0.86 F1 0.88 0.9 0.88 0.9 0.88 0.88 0.85 0.86 0.84 0.75
Date	Count	Mean	Significant
5/17/2021		0.84	FALSE

Parametric Prediction Interval Analysis Intra-Well Comparison for MW-16-02 Parameter: Fluoride Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Actual confiden	ne samples = 1.94667 ev = 0.0833809 mpling event(s) ace level is 1.0 - (, ,	Result 2 1.8 1.9 1.8 1.9 1.8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	edom = 15 (back	st (0.95/1) = 0.95 ground observat		
Date	Samples	Mean	Interval	

Non-Parametric Prediction Interval Intra-Well Comparison for MW-16-03 Parameter: Fluoride Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Total Percent Non-Detects = 0% Future Samples (k) = 1 Recent Dates = 1 Baseline Measurements (n) = 15 Maximum Baseline Concentration = 2.2 Confidence Level = 93.8% False Positive Rate = 6.2%

Baseline Me	asurements	Date 8/11/2016 9/22/2016 11/10/2016 1/11/2017 3/2/2017 4/19/2017 6/7/2017 7/26/2017 10/3/2017 3/28/2018 10/3/2018 3/20/2019 9/18/2019 3/18/2020 10/20/2020	Value 1.8 2 2.1 1.9 2.1 2 2.1 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2
Date	Count	Mean	Significant
5/17/2021	1	2.2	FALSE

Parametric Prediction Interval Analysis Intra-Well Comparison for MW-16-04 Parameter: Fluoride Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Parametric Prediction Interval Analysis Intra-Well Comparison for MW-16-05 Parameter: Fluoride Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Actual confiden t is Percentile o	ne samples = 1.81333 ev = 0.10601 mpling event(s) ice level is 1.0 - (if Student's T-Tes edom = 15 (back	st (0.95/1) = 0.95	1.6 1.8 1.7 1.8 F1F2 1.9 1.9 1.9 1.9 1.9 1.9 1.9	
Date	Samples	Mean	Interval	Significant
5/18/2021		1.9	[0, 2.00617]	FALSE

Non-Parametric Prediction Interval Intra-Well Comparison for MW-16-06 Parameter: Fluoride Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Total Percent Non-Detects = 0% Future Samples (k) = 1 Recent Dates = 1 Baseline Measurements (n) = 15 Maximum Baseline Concentration = 1.5 Confidence Level = 93.8% False Positive Rate = 6.2%

Baseline Mo	easurements	Date 8/11/2016 9/23/2016 11/10/2016 1/12/2017 3/2/2017 4/19/2017 6/7/2017 7/26/2017 10/3/2017 3/28/2018 10/3/2018 3/19/2019 9/19/2019 3/18/2020 10/20/2020	Value 1.2 1.4 1.4 1.2 1.5 1.4 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
		10/20/2020	1.5
Date 5/17/2021	Count 1	Mean 1.5	Significant FALSE

Parametric Prediction Interval Analysis Intra-Well Comparison for MW-16-07 Parameter: Fluoride Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Skewness Coefficient Parameter: pH, Field Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Location	Obs.	Mean	Std. Dev.	Skewness
MW-16-01	16	7.64937	0.262335	0.36183
MW-16-02	16	8.35625	0.206038	2.41425
MW-16-03	16	8.12812	0.211099	2.37546
MW-16-04	17	8.02529	0.25904	-0.829411
MW-16-05	16	8.21875	0.215557	2.30589
MW-16-06	16	7.89812	0.168808	0.409927
MW-16-07	17	7.85412	0.238617	0.225935

Obs.	Mean	Std. Dev.	Skewness
114	8.01719	0.311683	0.109754

Skewness Coefficient Parameter: pH, Field Natural Logarithm Transformation Non-Detects Replaced with 1/2 DL

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Location	Obs.	Mean	Std. Dev.	Skewness
MW-16-01	16	2.03408	0.0341355	0.26733
MW-16-02	16	2.12274	0.0239879	2.34693
MW-16-03	16	2.09503	0.025242	2.31227
MW-16-04	17	2.0821	0.0327252	-0.859807
MW-16-05	16	2.10611	0.0255098	2.21955
MW-16-06	16	2.06641	0.021292	0.365563
MW-16-07	17	2.06061	0.0303016	0.180134

Obs.		Mean	Std. Dev.	Skewness	
	114	2.08084	0.0388872	-0.0491185	

Shapiro-Wilks Test of Normality Parameter: pH, Field Location: MW-16-02 Normality Test of Parameter Concentrations Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL K = 8 for 16 measurements

i,	x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
1	8.21	9.04	0.83	0.5056	0.419648
2	8.21	8.5	0.29	0.329	0.09541
3	8.21	8.46	0.25	0.2521	0.063025
4	8.23	8.41	0.18	0.1939	0.034902
5	8.23	8.39	0.16	0.1447	0.023152
6	8.24	8.39	0.15	0.1005	0.015075
7	8.24	8.36	0.12	0.0593	0.007116
8	8.27	8.31	0.04	0.0196	0.000784
9	8.31	8.27	-0.04		
10	8.36	8.24	-0.12		
11	8.39	8.24	-0.15		
12	8.39	8.23	-0.16		
13	8.41	8.23	-0.18		
14	8.46	8.21	-0.25		
15	8.5	8.21	-0.29		
16	9.04	8.21	-0.83		

Sum of b values = 0.659112 Sample Standard Deviation = 0.206038 W Statistic = 0.682233

5% Critical value of 0.887 exceeds 0.682233 Evidence of non-normality at 95% level of significance

1% Critical value of 0.844 exceeds 0.682233 Evidence of non-normality at 99% level of significance Shapiro-Wilks Test of Normality Parameter: pH, Field Location: MW-16-02 Normality Test of Parameter Concentrations Natural Logarithm Transformation Non-Detects Replaced with 1/2 DL K = 8 for 16 measurements

i 1 2 3 4 5 6 7 8 9 10 11 12	x(i) 2.10535 2.10535 2.10535 2.10779 2.10779 2.109 2.109 2.11263 2.11746 2.12346 2.12704 2.12704	x(n-i+1) 2.20166 2.14007 2.13535 2.12942 2.12704 2.12704 2.12346 2.11746 2.11746 2.11263 2.109 2.109 2.10779	x(n-1+1)-x(i) 0.0963063 0.0347132 0.0299963 0.0216355 0.0192545 0.0180402 0.0144581 0.0048251 -0.0048251 -0.0144581 -0.0180402 -0.0192545	a(n-i+1) 0.5056 0.329 0.2521 0.1939 0.1447 0.1005 0.0593 0.0196	b(i) 0.0486924 0.0114207 0.00756205 0.00419512 0.00278613 0.00181304 0.000857364 9.4572e-005
13	2.12942	2.10779	-0.0216355		
14	2.13535	2.10535	-0.0299963		
15	2.14007	2.10535	-0.0347132		
16	2.20166	2.10535	-0.0963063		

Sum of b values = 0.0774214 Sample Standard Deviation = 0.0239879 W Statistic = 0.694457

5% Critical value of 0.887 exceeds 0.694457 Evidence of non-normality at 95% level of significance

1% Critical value of 0.844 exceeds 0.694457 Evidence of non-normality at 99% level of significance Shapiro-Wilks Test of Normality Parameter: pH, Field Location: MW-16-03 Normality Test of Parameter Concentrations Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL K = 8 for 16 measurements

i	x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	<mark>b(i)</mark>
1	7.95	8.82	0.87	0.5056	0.439872
2	8	8.31	0.31	0.329	0.10199
3	8	8.29	0.29	0.2521	0.073109
4	8.01	8.15	0.14	0.1939	0.027146
5	8.01	8.13	0.12	0.1447	0.017364
6	8.01	8.13	0.12	0.1005	0.01206
7	8.03	8.12	0.09	0.0593	0.005337
8	8.04	8.05	0.01	0.0196	0.000196
9	8.05	8.04	-0.01		
10	8.12	8.03	-0.09		
11	8.13	8.01	-0.12		
12	8.13	8.01	-0.12		
13	8.15	8.01	-0.14		
14	8.29	8	-0.29		
15	8.31	8	-0.31		
16	8.82	7.95	-0.87		

Sum of b values = 0.677074 Sample Standard Deviation = 0.211099 W Statistic = 0.685816

5% Critical value of 0.887 exceeds 0.685816 Evidence of non-normality at 95% level of significance

1% Critical value of 0.844 exceeds 0.685816 Evidence of non-normality at 99% level of significance Shapiro-Wilks Test of Normality Parameter: pH, Field Location: MW-16-03 Normality Test of Parameter Concentrations Natural Logarithm Transformation Non-Detects Replaced with 1/2 DL K = 8 for 16 measurements

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14	x(i) 2.07317 2.07944 2.07944 2.08069 2.08069 2.08069 2.08318 2.08443 2.08567 2.09433 2.09556 2.09556 2.09556 2.09802 2.11505	x(n-i+1) 2.17702 2.11746 2.11505 2.09802 2.09556 2.09556 2.09433 2.08567 2.08443 2.08318 2.08069 2.08069 2.08069 2.08069 2.07944	x(n-1+1)-x(i) 0.10385 0.0380181 0.0356084 0.0173272 0.0148702 0.0148702 0.0111456 0.00124301 -0.0124301 -0.011456 -0.0148702 -0.0148702 -0.0173272 -0.0356084	a(n-i+1) 0.5056 0.329 0.2521 0.1939 0.1447 0.1005 0.0593 0.0196	b(i) 0.0525065 0.0125079 0.00897688 0.00335974 0.00215171 0.00149445 0.000660936 2.4363e-005
15	2.11746	2.07944	-0.0380181		
16	2.17702	2.07317	-0.10385		

Sum of b values = 0.0816826 Sample Standard Deviation = 0.025242 W Statistic = 0.698101

5% Critical value of 0.887 exceeds 0.698101 Evidence of non-normality at 95% level of significance

1% Critical value of 0.844 exceeds 0.698101 Evidence of non-normality at 99% level of significance Shapiro-Wilks Test of Normality Parameter: pH, Field Location: MW-16-05 Normality Test of Parameter Concentrations Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL K = 8 for 16 measurements

- E	x(i)	x(n-i+1)	x(n-1+1)-x(i)	a(n-i+1)	b(i)
1	8	8.93	0.93	0.5056	0.470208
2	8.03	8.35	0.32	0.329	0.10528
3	8.05	8.29	0.24	0.2521	0.060504
4	8.09	8.28	0.19	0.1939	0.036841
5	8.09	8.28	0.19	0.1447	0.027493
6	8.12	8.25	0.13	0.1005	0.013065
7	8.16	8.2	0.04	0.0593	0.002372
8	8.19	8.19	0	0.0196	0
9	8.19	8.19	0		
10	8.2	8.16	-0.04		
11	8.25	8.12	-0.13		
12	8.28	8.09	-0.19		
13	8.28	8.09	-0.19		
14	8.29	8.05	-0.24		
15	8.35	8.03	-0.32		
16	8.93	8	-0.93		

Sum of b values = 0.715763 Sample Standard Deviation = 0.215557 W Statistic = 0.735057

5% Critical value of 0.887 exceeds 0.735057 Evidence of non-normality at 95% level of significance

1% Critical value of 0.844 exceeds 0.735057 Evidence of non-normality at 99% level of significance Shapiro-Wilks Test of Normality Parameter: pH, Field Location: MW-16-05 Normality Test of Parameter Concentrations Natural Logarithm Transformation Non-Detects Replaced with 1/2 DL K = 8 for 16 measurements

i 1 2 3 4 5 6 7 8 9 10 11 12 12	x(i) 2.07944 2.08318 2.08567 2.09063 2.09433 2.09924 2.10291 2.10291 2.10291 2.10413 2.11021 2.11384 2.11384	x(n-i+1) 2.18942 2.12226 2.11505 2.11384 2.11384 2.11021 2.1021 2.10291 2.10291 2.09924 2.09433 2.09063 2.00063	x(n-1+1)-x(i) 0.109975 0.039077 0.0293779 0.0232142 0.0232142 0.015883 0.00488999 0 0 -0.00488999 -0.015883 -0.0232142	a(n-i+1) 0.5056 0.329 0.2521 0.1939 0.1447 0.1005 0.0593 0.0196	b(i) 0.0556033 0.0128563 0.00740616 0.00450124 0.0033591 0.00159625 0.000289976 0
13	2.11384	2.09063	-0.0232142		
14	2.11505	2.08567	-0.0293779		
15	2.12226	2.08318	-0.039077		
16	2.18942	2.07944	-0.109975		

Sum of b values = 0.0856123 Sample Standard Deviation = 0.0255098 W Statistic = 0.750874

5% Critical value of 0.887 exceeds 0.750874 Evidence of non-normality at 95% level of significance

1% Critical value of 0.844 exceeds 0.750874 Evidence of non-normality at 99% level of significance Parametric Prediction Interval Analysis Intra-Well Comparison for MW-16-01 Parameter: pH, Field Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Actual confiden t is Percentile o	ne samples = 7.67667 ev = 0.246914 mpling event(s) ice level is 1.0 - (if Student's T-Tes edom = 15 (back	Date 8/11/2016 9/22/2016 11/9/2016 1/11/2017 3/1/2017 4/19/2017 6/7/2017 7/26/2017 10/3/2017 3/29/2018 10/3/2018 3/20/2019 9/18/2019 3/19/2020 10/20/2020 10/20/2020 0.05/1)/2 = 97.5 st (0.95/1/2) = 0.5 ground observations of the second s	975	
Date	Samples	Mean	Interval	Significant
5/17/2021		7.24	[7.13, 8.22]	FALSE

Non-Parametric Prediction Interval Intra-Well Comparison for MW-16-02 Parameter: pH, Field Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Total Percent Non-Detects = 0% Future Samples (k) = 1 Recent Dates = 1 Baseline Measurements (n) = 15 Maximum Baseline Concentration = 9.04 Confidence Level = 93.8% False Positive Rate = 6.2%

Baseline M	easurements	Date 8/11/2016 9/22/2016 11/9/2016 1/11/2017 3/2/2017 4/19/2017 6/7/2017 7/26/2017 10/3/2017 3/28/2018 10/3/2018 3/20/2019 9/18/2019 3/19/2020 10/20/2020	Value 8.39 9.04 8.5 8.21 8.46 8.41 8.36 8.23 8.21 8.24 8.31 8.23 8.39 8.27 8.21	
Date 5/17/2021	Count	Mean 8.24	Significant FALSE	

Non-Parametric Prediction Interval Intra-Well Comparison for MW-16-03 Parameter: pH, Field Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Total Percent Non-Detects = 0% Future Samples (k) = 1 Recent Dates = 1 Baseline Measurements (n) = 15 Maximum Baseline Concentration = 8.82 Confidence Level = 93.8% False Positive Rate = 6.2%

Baseline	Measurements	Date 8/11/2016 9/22/2016 11/10/2016 1/11/2017 3/2/2017 4/19/2017 6/7/2017 7/26/2017 10/3/2018 3/28/2018 10/3/2018 3/20/2019 9/18/2019 3/18/2020 10/20/2020	Value 8.29 8.82 8.31 8.05 8.15 8.12 8.13 8.01 7.95 8.01 8.04 8 8.13 8.01	
		10/20/2020	8	
Date	Count	Mean	Significant	

Date	Count	Mean	Significant
5/17/2021	1	8.03	FALSE

Parametric Prediction Interval Analysis Intra-Well Comparison for MW-16-04 Parameter: pH, Field Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Baseline Sa From 16 basel Baseline mear Baseline std D	ine samples n = 8.0575 ev = 0.22971	Date 8/19/2016 9/23/2016 11/10/2016 1/12/2017 3/2/2017 4/19/2017 6/7/2017 7/26/2017 9/11/2017 10/5/2017 3/29/2018 10/5/2018 3/19/2019 9/17/2019 3/18/2020 10/20/2020	Result 7.97 7.72 8.21 7.69 8.09 8.02 7.91 8.25 8.19 8.27 8.27 8.27 8.09 8.3 8.19 7.56	
For 1 recent sampling event(s) Actual confidence level is $1.0 - (0.05/1)/2 = 97.5 \%$ t is Percentile of Student's T-Test $(0.95/1/2) = 0.975$ Degrees of Freedom = 16 (background observations) - 1 t(0.975, 16) = 2.13145				
Dato	Samples	Moan	Interval	

Date	Samples	Mean	Interval	Significant
5/19/2021	1	7.51	[7.55, 8.56]	TRUE

Non-Parametric Prediction Interval Intra-Well Comparison for MW-16-05 Parameter: pH, Field Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Total Percent Non-Detects = 0% Future Samples (k) = 1 Recent Dates = 1 Baseline Measurements (n) = 15 Maximum Baseline Concentration = 8.93 Confidence Level = 93.8% False Positive Rate = 6.2%

Baseline Mo	easurements	Date 8/19/2016 9/22/2016 11/10/2016 1/12/2017 3/1/2017 4/19/2017 6/8/2017 7/26/2017 10/3/2017 3/29/2018 10/3/2018 3/19/2019 9/19/2020 10/19/2020	Value 8.19 8.93 8.35 8 8.29 8.2 8.16 8.09 8.12 8.03 8.28 8.05 8.28 8.19 8.09	
Date 5/18/2021	Count	Mean 8.25	Significant FALSE	

Parametric Prediction Interval Analysis Intra-Well Comparison for MW-16-06 Parameter: pH, Field Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

t is Percentile of	ne samples = 7.91533 ev = 0.159547 mpling event(s) ce level is 1.0 - (i f Student's T-Tes edom = 15 (back	st (0.95/1/2) = 0.9	975	
Date	Samples	Mean	Interval	Significant
5/17/2021	1	7.64	[7.56, 8.27]	FALSE

Parametric Prediction Interval Analysis Intra-Well Comparison for MW-16-07 Parameter: pH, Field Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Baseline Samples	Date 8/19/2016 9/23/2016 11/10/2016 1/12/2017 7/10/2017 7/25/2017 8/10/2017 8/30/2017 9/11/2017 10/5/2017 3/29/2018 10/4/2018 2/20/2040	Result 8.03 8.02 8.05 7.69 7.74 7.5 7.84 7.56 7.51 7.71 7.78 8.15 7.93
	3/20/2019 9/17/2019 3/19/2020 10/20/2020	7.87 8.19 8.3 7.72
From 16 baseline samples Baseline mean = 7.85375 Baseline std Dev = 0.246438	10/20/2020	1.12
For 1 recent sampling event(s) Actual confidence level is 1.0 - (t t is Percentile of Student's T-Tes Degrees of Freedom = 16 (backg t(0.975, 16) = 2.13145	t (0.95/1/2) = 0.9	75

Date	Samples	Mean	Interval	Significant
5/18/2021	1	7.86	[7.31, 8.4]	FALSE

Skewness Coefficient Parameter: Sulfate Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Location	Obs.	Mean	Std. Dev.	Skewness
MW-16-01	16	33.4375	5.96622	0.362098
MW-16-02	16	2.36875	1.93863	0.509235
MW-16-03	16	2.73125	1.97204	0.09773
MW-16-04	17	7.85294	7.59474	1.27252
MW-16-05	16	3.56562	2.72401	1.35571
MW-16-06	16	27.6563	17.2342	0.20805
MW-16-07	17	18.8118	22.7264	2.24946

(Obs.	Mean	Std. Dev.	Skewness
1	14	13.7671	16.4018	1.72288

Skewness Coefficient Parameter: Sulfate Natural Logarithm Transformation Non-Detects Replaced with 1/2 DL

114

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Complianc	e Locations	1		
Location	Obs.	Mean	Std. Dev.	Skewness
MW-16-01	16	3.49492	0.177141	0.0951712
MW-16-02	16	0.473915	0.960767	-0.0402426
MW-16-03	16	0.627399	1.00125	-0.399455
MW-16-04	17	1.6645	0.892427	0.551856
MW-16-05	16	0.970278	0.870576	-0.55014
MW-16-06	16	3.04148	0.8898	-0.97497
MW-16-07	17	2.42113	1.01629	0.410858
All Location	ns			
	Obs.	Mean	Std. Dev.	Skewness

1.39683

1.8174

-0.14365

Parametric Prediction Interval Analysis Intra-Well Comparison for MW-16-01 Parameter: Sulfate Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

t is Percentile o	ne samples = 33.6 ev = 6.13887 mpling event(s) ce level is 1.0 - (f Student's T-Tes edom = 15 (back	Date 8/11/2016 9/22/2016 11/9/2016 1/11/2017 3/1/2017 4/19/2017 6/7/2017 7/26/2017 10/3/2017 3/29/2018 10/3/2018 3/20/2019 9/18/2019 3/19/2020 ~ 10/20/2020 0.05/1) = 95 % st (0.95/1) = 0.95 ground observation		
Date	Samples	Mean	Interval	Significant
5/17/2021		31	[0, 44.767]	FALSE

Non-Parametric Prediction Interval Intra-Well Comparison for MW-16-02 Parameter: Sulfate Original Data (Not Transformed) Non-Detects Replaced with Detection Limit

Total Percent Non-Detects = 73.3333% Future Samples (k) = 1 Recent Dates = 1 Baseline Measurements (n) = 15 Maximum Baseline Concentration = 10 Confidence Level = 93.8% False Positive Rate = 6.2%

Baseline Measurements	Date 8/11/2016 9/22/2016 11/9/2016 1/11/2017 3/2/2017 4/19/2017 6/7/2017 7/26/2017 10/3/2017 3/28/2018 10/3/2018 3/20/2019 9/18/2019 3/19/2020 10/20/2020	Value ND<1 U ND<1 U ND<5 U ND<5 U ND<10 U ND<10 U ND<10 U ND<1 U 1.5 1.3 ND<1 U 1.1 1.5 ND<1 U	
Data Count	Moan	Significant	

Date	Count	Mean	Significant
5/17/2021	1	10	FALSE

Non-Parametric Prediction Interval Intra-Well Comparison for MW-16-03 Parameter: Sulfate Original Data (Not Transformed) Non-Detects Replaced with Detection Limit

Total Percent Non-Detects = 93.3333% Future Samples (k) = 1 Recent Dates = 1 Baseline Measurements (n) = 15 Maximum Baseline Concentration = 10 Confidence Level = 93.8% False Positive Rate = 6.2%

Baseline Measurements	Date 8/11/2016 9/22/2016 11/10/2016 1/11/2017 3/2/2017 4/19/2017 6/7/2017 7/26/2017 10/3/2017 3/28/2018 10/3/2018 3/20/2019 9/18/2019 3/18/2020 10/20/2020	Value ND<10 U ND<1 U ND<5 U ND<5 U ND<5 U ND<5 U ND<10 U ND<10 U ND<1 U
	10/20/2020	

Date	Count	Mean	Significant
5/17/2021	1	10	FALSE

Non-Parametric Prediction Interval Intra-Well Comparison for MW-16-04 Parameter: Sulfate Original Data (Not Transformed) Non-Detects Replaced with Detection Limit

Total Percent Non-Detects = 86.6667% Future Samples (k) = 1 Recent Dates = 1 Baseline Measurements (n) = 15 Maximum Baseline Concentration = 50 Confidence Level = 93.8% False Positive Rate = 6.2%

Baseline	Measurements	Date 8/19/2016 9/23/2016 11/10/2016 1/12/2017 3/2/2017 4/19/2017 6/7/2017 7/26/2017 9/12/2017 10/5/2017 3/29/2018 10/5/2018 3/19/2019 9/17/2019 3/18/2020	Value ND<50 U 24 ND<20 U ND<20 U ND<20 U ND<20 U 17 ND<20 U 17 ND<10 U ND<5 U ND<5 U ND<5 U ND<5 U ND<5 U ND<5 U ND<5 U ND<5 U ND<5 U
Date	Count	Mean	Significant

Date	Count	Mean	Significant
5/19/2021	1	5	FALSE

Parametric Prediction Interval Analysis Intra-Well Comparison for MW-16-05 Parameter: Sulfate Natural Logarithm Transformation Non-Detects Replaced with 1/2 DL

From 15 baseline Baseline mean = 0 Baseline mean = 0 Baseline std Dev = For 1 recent samp Actual confidence t is Percentile of S Degrees of Freedo t(0.95, 15) = 1.767	- 9.873605 = 0.807359 pling event(s) 9 level is 1.0 - ((Student's T-Tes 10m = 15 (backg	t (0.95/1) = 0.95	Result ND<1.60944 U ND<-0.693147 ND<0.916291 U ND<0.916291 U ND<1.60944 U ND<1.60944 U ND<1.60944 U 0.641854 ND<-0.693147 1.06471 0.405465 1.8563 0.875469 1.28093 0.0953102	J J F1F2
Date S 5/18/2021 1	Samples	Mean	Interval	Significant
	I	2.42037	[0, 2.34225]	TRUE

Parametric Prediction Interval Analysis Intra-Well Comparison for MW-16-06 Parameter: Sulfate Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Actual confiden t is Percentile o	ne samples = 25.5 ev = 15.4444 mpling event(s) nce level is 1.0 - (of Student's T-Tes edom = 15 (back	st (0.95/1) = 0.95		
Date	Samples	Mean	interval	Significant
5/17/2021	1	60	[0, 53.5945]	TRUE

Parametric Prediction Interval Analysis Intra-Well Comparison for MW-16-07 Parameter: Sulfate Natural Logarithm Transformation Non-Detects Replaced with 1/2 DL

Intra-Well Unified Guid. Formula 95% One-Sided Comparison

Baseline Samples	Date	Result
	8/19/2016	3.52636
	9/23/2016	2.48491
	11/10/2016	2.26176
	1/12/2017	2.18605
	7/10/2017	4.5326
	7/25/2017	3.82864
	8/10/2017	3.3322
	8/30/2017	3.17805
	9/12/2017	2.83321
	10/5/2017	2.70805
	3/29/2018	2.11626
	10/4/2018	1.64866
	3/20/2019	1.60944
	9/17/2019	1.36098
	3/19/2020	1.335
	10/20/2020	0.993252
From 16 baseline samples		
Baseline mean = 2.49596		
Baseline std Dev = 1.00007		
For 1 recent sampling event(s) Actual confidence level is 1.0 - (0	0.05/1) = 95 %	
t is Percentile of Student's T-Tes		
Degrees of Freedom = 16 (backg	· · ·	ons) - 1

t(0.95, 16) = 1.75305

Date	Samples	Mean	Interval	Significant
5/18/2021	1	1.22378	[0, 4.3031]	FALSE

Skewness Coefficient Parameter: Total Dissolved Solids Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Skewness > 1 indicates positively skewed data Skewness < -1 indicates negatively skewed data

Location	Obs.	Mean	Std. Dev.	Skewness
MW-16-01	16	1250	51.6398	0
MW-16-02	16	1156.25	51.2348	-0.251976
MW-16-03	16	1028.13	61.4512	0.0313701
MW-16-04	17	4755.88	361.37	0.0534119
MW-16-05	16	1069.38	67.0789	-0.372395
/W-16-06	16	1005.63	54.4021	0.357082
MW-16-07	17	706.471	26.2062	0.870173

Obs.	Mean	Std. Dev.	Skewness
114	1587.81	1349.26	1.94796

Parametric Prediction Interval Analysis Intra-Well Comparison for MW-16-01 Parameter: Total Dissolved Solids Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Parametric Prediction Interval Analysis Intra-Well Comparison for MW-16-02 Parameter: Total Dissolved Solids Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Actual confiden t is Percentile o Degrees of Fre	ne samples = 1160 ev = 50.7093 mpling event(s) nce level is 1.0 - (of Student's T-Tes edom = 15 (back	st (0.95/1) = 0.95	Result 1200 1200 1200 1200 1200 1100 1100 1200 1200 1200 1200 1200 1100 1100 1100	
t(0.95, 15) = 1.7			,	
Date 5/17/2021	Samples 1	Mean 1100	Interval [0, 1252.24]	Significant FALSE

Parametric Prediction Interval Analysis Intra-Well Comparison for MW-16-03 Parameter: Total Dissolved Solids Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

t is Percentile of	ne samples = 1032 ev = 61.5514 mpling event(s) ce level is 1.0 - (f Student's T-Tes edom = 15 (back	Date 8/11/2016 9/22/2016 11/10/2016 1/11/2017 3/2/2017 4/19/2017 6/7/2017 7/26/2017 10/3/2017 3/28/2018 10/3/2018 3/20/2019 9/18/2019 3/18/2020 10/20/2020 0.05/1) = 95 % st (0.95/1) = 0.95 ground observation		
Date	Samples	Mean	Interval	Significant
5/17/2021		970	[0, 1143.97]	FALSE

Parametric Prediction Interval Analysis Intra-Well Comparison for MW-16-04 Parameter: Total Dissolved Solids Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Parametric Prediction Interval Analysis Intra-Well Comparison for MW-16-05 Parameter: Total Dissolved Solids Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

t is Percentile o	ne samples = 1076 ev = 63.7854 mpling event(s) ce level is 1.0 - (f Student's T-Tes edom = 15 (back	Date 8/19/2016 9/22/2016 11/10/2016 1/12/2017 3/1/2017 4/19/2017 6/8/2017 7/26/2017 10/3/2017 3/29/2018 10/3/2018 3/19/2019 9/19/2019 3/19/2020 10/19/2020 10/19/2020 0.05/1) = 95 % st (0.95/1) = 0.95 ground observati		
Date	Samples	Mean	Interval	Significant
5/18/2021		970	[0, 1192.03]	FALSE

Parametric Prediction Interval Analysis Intra-Well Comparison for MW-16-06 Parameter: Total Dissolved Solids Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

t is Percentile of	ne samples = 1006 ev = 56.2901 mpling event(s) ce level is 1.0 - (f Student's T-Tes edom = 15 (back	Date 8/11/2016 9/23/2016 11/10/2016 1/12/2017 3/2/2017 4/19/2017 6/7/2017 7/26/2017 10/3/2018 3/19/2019 9/19/2019 3/18/2020 10/20/2020 0.05/1) = 95 % st (0.95/1) = 0.95 ground observati		
Date	Samples	Mean	Interval	Significant
5/17/2021	1	1000	[0, 1108.4]	FALSE

Parametric Prediction Interval Analysis Intra-Well Comparison for MW-16-07 Parameter: Total Dissolved Solids Original Data (Not Transformed) Non-Detects Replaced with 1/2 DL

Intra-Well Unified Guid. Formula 95% One-Sided Comparison

Significant FALSE