

NTH Consultants, Ltd.

Infrastructure Engineering and Environmental Services

Mr. Christopher Scieszka DTE Electric Company. One Energy Plaza Detroit, Michigan 48226 41780 Six Mile Road, Suite 200 Northville, MI 48168 248.553.6300 248.324.5179 Fax

October 14, 2021 NTH Project No. 62-210081-02

RE: Inflow Design Flood Control System Plan 5-Year Periodic Assessment River Rouge Power Plant Former Bottom Ash Basin River Rouge, Michigan

Dear Mr. Scieszka:

NTH Consultants, Ltd. (NTH) has completed a periodic update to the initial inflow design flood control (IDFC) system plan for the bottom ash basins at River Rouge Power Plant (RRPP) in accordance with the Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals (CCR) from Electric Utilities 40 CFR Part 257.82. Specifically, this inflow design flood control system plan constitutes the 5-year periodic assessment of the initial plan (dated October 14, 2016) for this impoundment, as required by 40 CFR Part 257.82(c)(4). NTH performed this assessment using information provided by personnel from DTE Electric Company (DTE), observations we made during a site visit by our personnel, and an updated topographic survey. In general, the analysis methods and development of information are presented in the initial inflow design flood control system plan and are not reiterated herein. This letter identifies changes to the conditions documented in the initial plan and stipulates any new information made available to NTH as part of the periodic assessment that may alter or re-affirm the findings from the initial 2016 evaluation, which is attached to the end of the report for reference.

BACKGROUND

The RRPP bottom ash basin is a physical sedimentation basin that previously received bottom ash and other process flow effluent from the power plant. RRPP ceased power generation operations and terminated coal burning and ash generation on June 1, 2020. The basin was cleaned of ash residuals, which was completed on September 21, 2020. Following the CCR removal, the basin was restored as a non-CCR process water basin on October 27, 2020. As of the date of this evaluation, the former CCR surface impoundment has not achieved certified clean closure as defined by 40 CFR 257.

Discharge water from the basin flows over an overflow weir and into the weir box structure before going to a below-grade pump station. However, previously there were two sets of pumps in the pump station, one set that recirculated the sluice water back into the plant for operational process use and one set that pumped to an outfall in the overflow canal. The recirculation pumps have been taken out of service and the basin now only pumps to the outfall in the overflow canal, which is authorized via a National Pollution Discharge Eliminations Systems (NPDES) permit. The basin is an incised surface impoundment, per the definition in 40 CFR 257.53 and therefore, a 25-year storm event was used for the assessment.

NTH prepared an inflow design flood control system plan in 2016 to document and demonstrate the hydrologic and hydraulic capacity and performance conditions of the CCR surface impoundment, including the basin, intake structures, and downstream hydraulic structures in accordance with 40 CFR 257.82. We previously determined that there were no deficiencies for the bottom ash CCR surface impoundment or downstream conveyance structures that warranted upgrades or improvements. In addition, the discharge from the basin meets the regulatory NPDES permit requirements for total suspended solids (TSS) and fats, oils, and grease (FOG).

ASSESSMENT

For this periodic evaluation, NTH performed the following to analyze the condition of the surface impoundment and verify the information presented in the initial IDFC report:

- Performed a site visit on August 10, 2021 to meet DTE personnel, learn about any changes in the DTE assets, and observe the current system conditions. A photo log from the site visit is included as an attachment to this letter;
- Reviewed the initial report;
- Procured supplemental topographic and bathymetric surveying of the surface impoundment. The supplemental survey was performed on May 11, 2021 by BMJ Engineers & Surveyors, Inc. to update previous bathymetric information from 2016 and to facilitate accurate capacity calculations for the system. The supplemental survey information is included as an attachment to this letter;
- Obtained updated information on each of the inflows into the basin;
- Updated the model input parameters including new peak flow information, system removals and reconfigurations, and updated capacity of the basin according to the bathymetric survey. The updated site plan is included as an attachment to this letter; and
- Re-ran the Autodesk Storm and Sanitary Analysis (SSA) modeling software with the updated data inputs. The updated model output is included as an attachment to this letter.

Based on information from the above actions, NTH summarizes the following for this IDFC periodic assessment:

- The current configuration and condition of the basin (as shown in the attached photographs) is consistent with those presented in the initial IDFC report, except to several of the inflow and outflow processes as summarized below. Also, as stated before, CCR material was removed from the basin and it was restored as a process water basin.
- The approximate capacity of the basin is not significantly different from that presented in the initial report but has increased as a result of the CCR material removal.

• 2.7 million gallons (2.3 million gallons in 2016).

As a point of clarification, the capacity of the basins at any given time is a function of the active dredging state and is not necessarily indicative of changes to the basin geometry. The overflow weir and basin blowdown pumps control the basin water levels and flow and NTH staff observed no indication that the basin or weir geometries or basin blowdown pumps have been altered since the initial IDFC report.

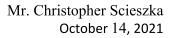
• Analysis of the inflow data provided by DTE showed that many of the previous flows were removed and abandoned after the plant ceased power generation activities. However, flow was added from the groundwater extraction system that was installed in 2018.

• Overall, the total flows into the basin dropped from 1.5 cfs to 1.45 cfs. As stated previously, the recirculation system was removed from service, removing another approximately 4.26 cfs of flow when that system was in operation.

No.	Pipe	Diameter (inches)	Invert	Flow Rate (cfs)	Frequency	Changes Since 2016 IDFC Report
1	Sand Filter Discharge	6	578.63	Abandoned, stormwater flow included in basin watershed	Storm events	No changes
2	Fire Booster Drain	10	578.84	*5.6	Once a month for an hour	No changes
3	Truck Bay Silo #1 Drain (?)	12	579.38	*Abandoned, stormwater flow included in basin watershed	Storm events	No changes
4	Transfer House Wash Down	6	578.31	0.1	Sporadically	No changes
5	Ash Settling Bins Drain	12	579.05	 (a) 4.26 from the bottom ash basin recirculation pumps (b) 1.07 from Sump 2 in plan (c) 0.04 from RO/UF Sump 	Twice Daily	 (a) System no longer in use since June 2020 (b) No changes (c) No changes
6	Truck Bay Silo #2 Drain	12	579.19	0.1	During washdowns	Area capped June 2020. Does not discharge to basin

SURFACE IMPOUNDMENT INFLOW SUMMARY

No.	Pipe	Diameter (inches)	Invert	Flow Rate (cfs)	Frequency	Changes Since 2016 IDFC Report
7	BFG Condensate Drain	4	578.74	0.1	Unknown	No changes
8	BFG House Storm Drain	12	578.15	Gravity-fed Stormwater flow already included in basin watershed	Storm events	No changes
9	Pump House Sump Pump	3	Unknown	0.1	Storm events	No changes
10	Groundwater Extraction System	4**	580.3**	0.05	Continuously	11 Groundwater Extraction Wells collect surrounding groundwater and discharge into basin at a single point. Installed June 2018. Of the 11 wells, 10 operate continuously.


*NTH assumed the fire booster flow is not present during the analysis because it is highly unlikely that DTE will test the fire booster pump during a 25-year storm event in addition to the peak process flows occurring simultaneously.

**Values are approximate and are based off visual confirmation during the site visit.

SURFACE IMPOUNDMENT PUMP OUTFLOW SUMMARY

	Number of Pumps	Flow Rate (gpm)	Total Dynamic Head (Ft)	Changes Since 2016 IDFC Report
Recirculation Pumps	3	958	660	No longer in use
Blowdown Pumps	2	220	50	No changes*

*Pumps still run manually by DTE staff one at a time when basin water level reaches an elevation of 577'-8" (one foot below top of sheet pile at 579'-8") and discharge to overflow canal

- The dimensions, capacities, and operations of the receiving stormwater system, which consists of the blowdown pumps and piping to the outfall in the overflow canal, remains unchanged from that presented in the initial report; however, the recirculation system is no longer in use.
- Information from the supplemental survey indicates basin water surface elevations are consistent with that documented in the initial IDFC report.

The inflow design flood control system plan presented in the initial report is still applicable to the current condition of the RRPP bottom ash basin because the basin, overflow weir, basin blowdown pumps, and outfall are unchanged; however, there have been some operational changes due to the plant closure in 2020, causing the removal of the recirculation system and changing the basin to a non-CCR process water basin. Since the basin has not received certified clean closure as the date of this evaluation, and despite the changes to the operational inflows and outflows, the basin still meets the hydrologic and hydraulic capacity and performance requirements for bottom ash CCR surface impoundments in accordance with 40 CFR 257.82.

CONCLUSIONS

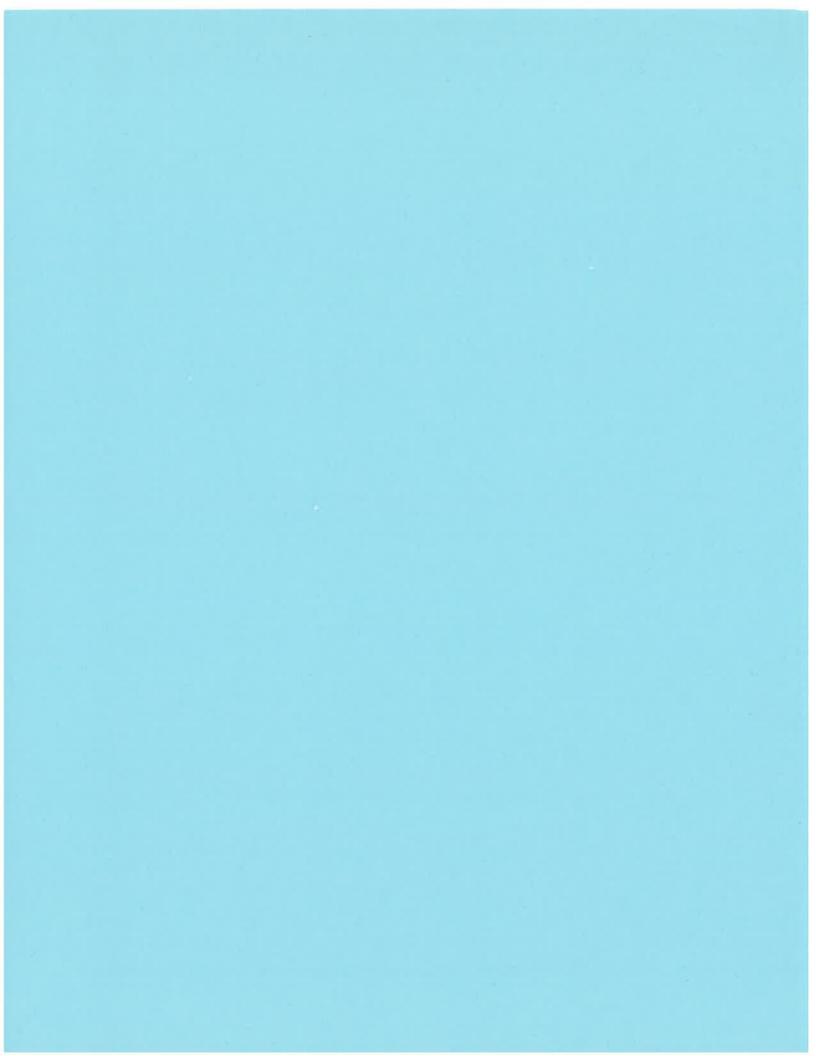
Based on the findings summarized herein and the hydrologic and hydraulic capacity requirements for CCR surface impoundments presented in 40 CFR 257.82, NTH has determined that the surface impoundment for RRPP meets the criteria of this section. In accordance with 40 CFR 257.82(c)(5), a statement of Certification for the RRPP surface impoundment is included with this letter as an attachment. A copy of this letter should be kept in the facility's operating record for future reference.

Please contact NTH if you have any questions.

Sincerely,

NTH Consultants, Ltd.

DocuSigned by: David R. Lutz

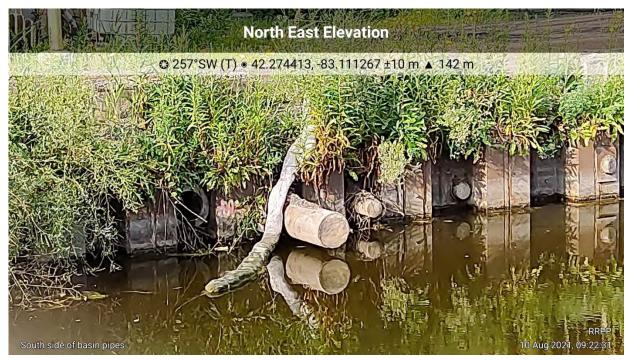

David R. Lutz, P.E. Vice President

DRL/SLG/mam

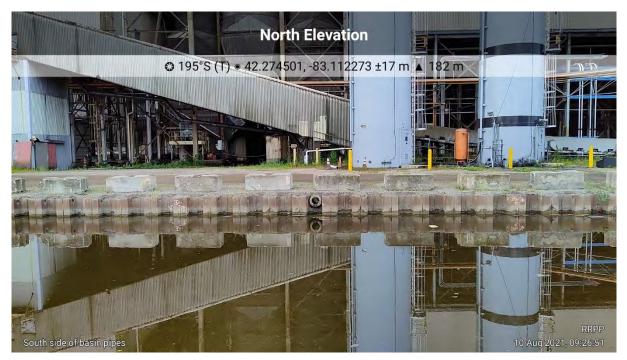
Attachments

DocuSigned by: Samantha L. Grant

Samantha L. Grant, P.E. Project Engineer



Photograph 1: Inlet Pipes at East End of Basin from Southeast Corner of Basin Looking Northeast



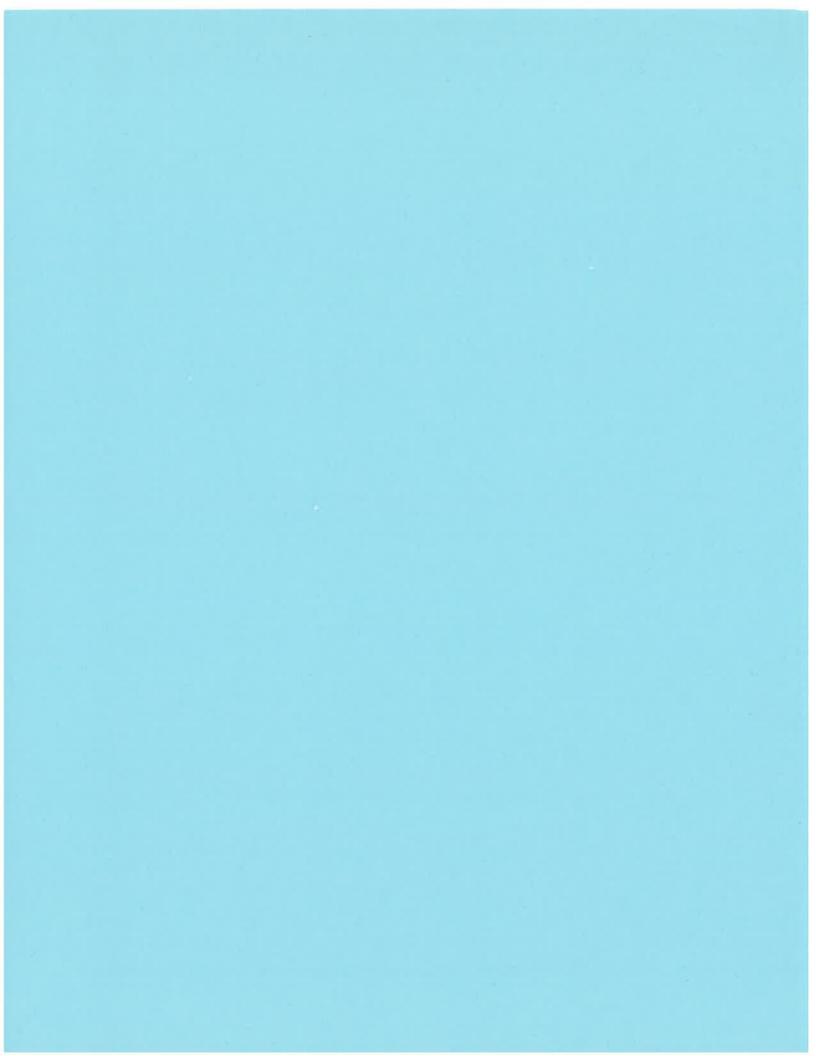
Photograph 2: New Groundwater Extraction Well Discharge from Southeast Corner of Basin Looking Northeast

Photograph 3: Transfer House Wash Down Inlet from Northeast Corner of Basin Looking Southwest

Photograph 4: Ash Settling Bins Drain from North Side of Basin Looking South

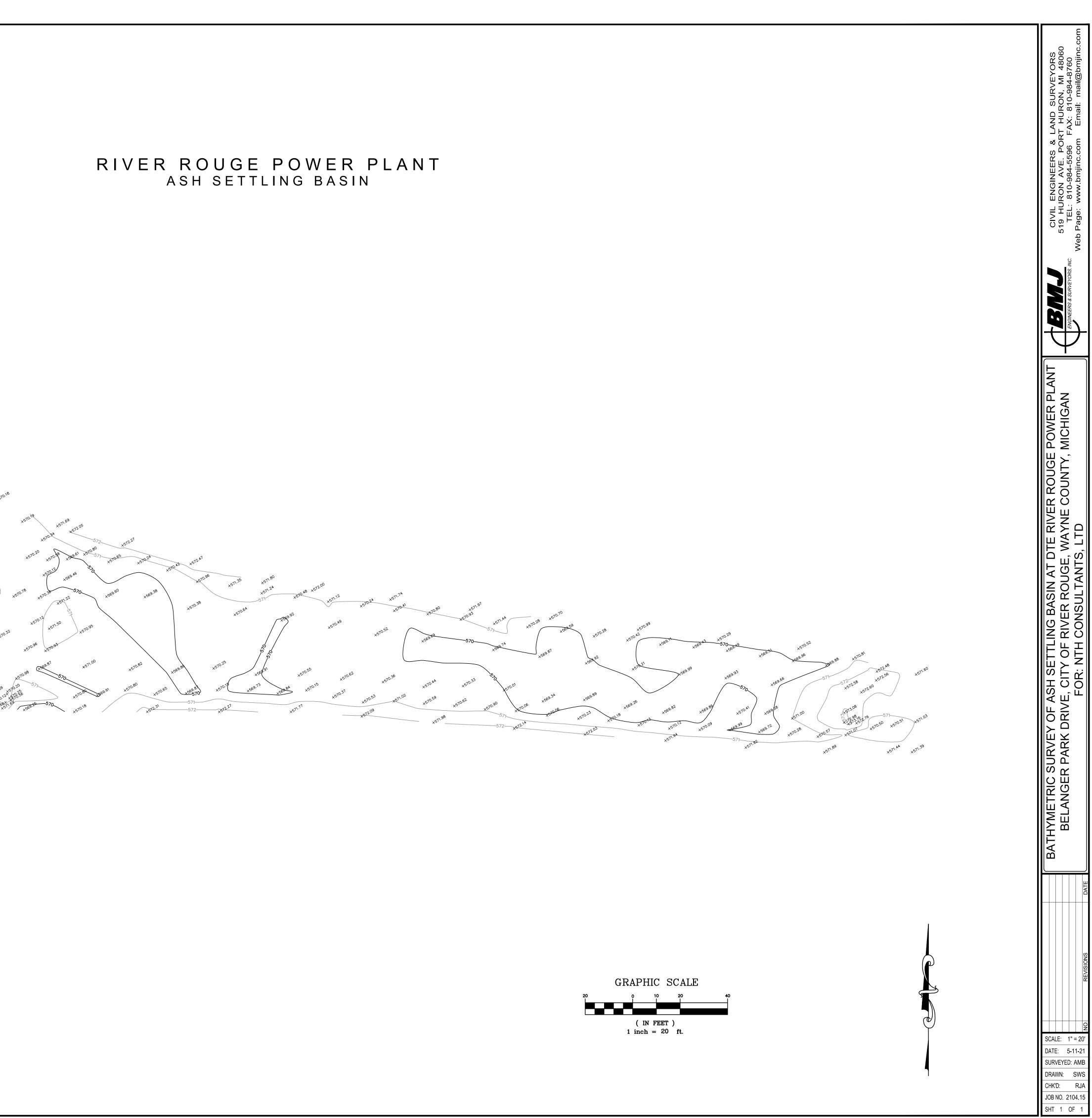
Photograph 5: Underflow Weir and BFG Condensate Drain from North Side of Basin Looking South

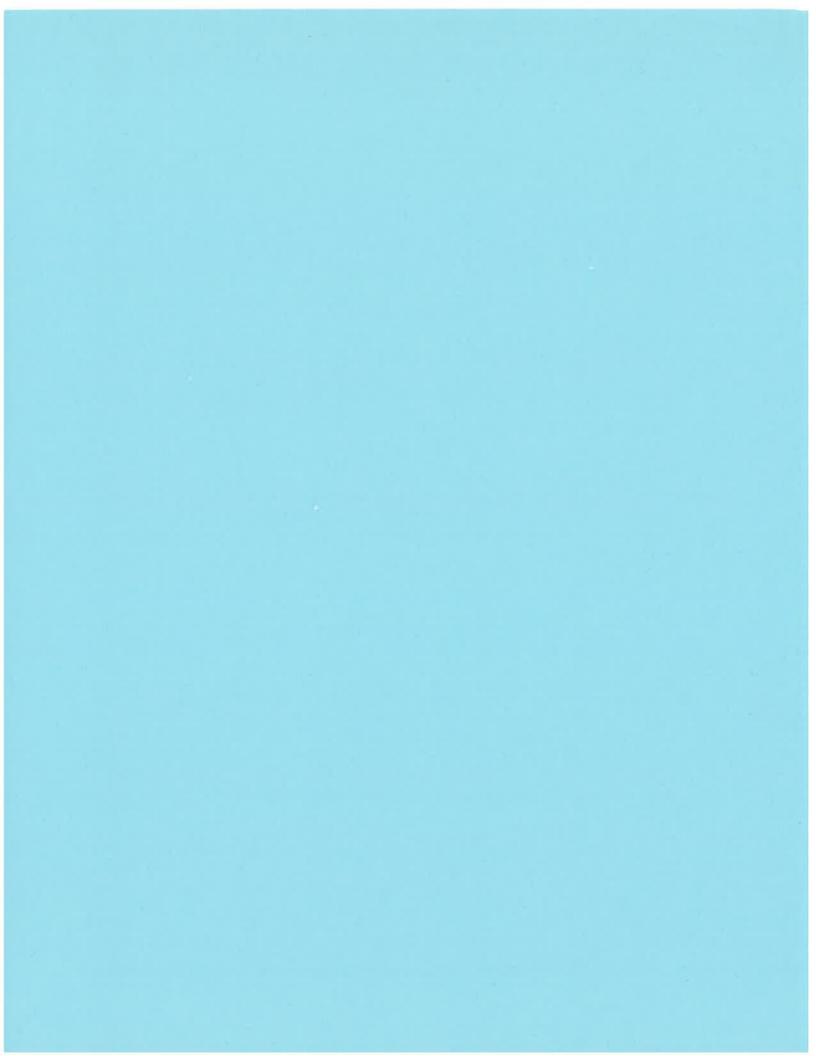
Photograph 6: BFG House Storm Drain from North Side of Basin Looking Southwest

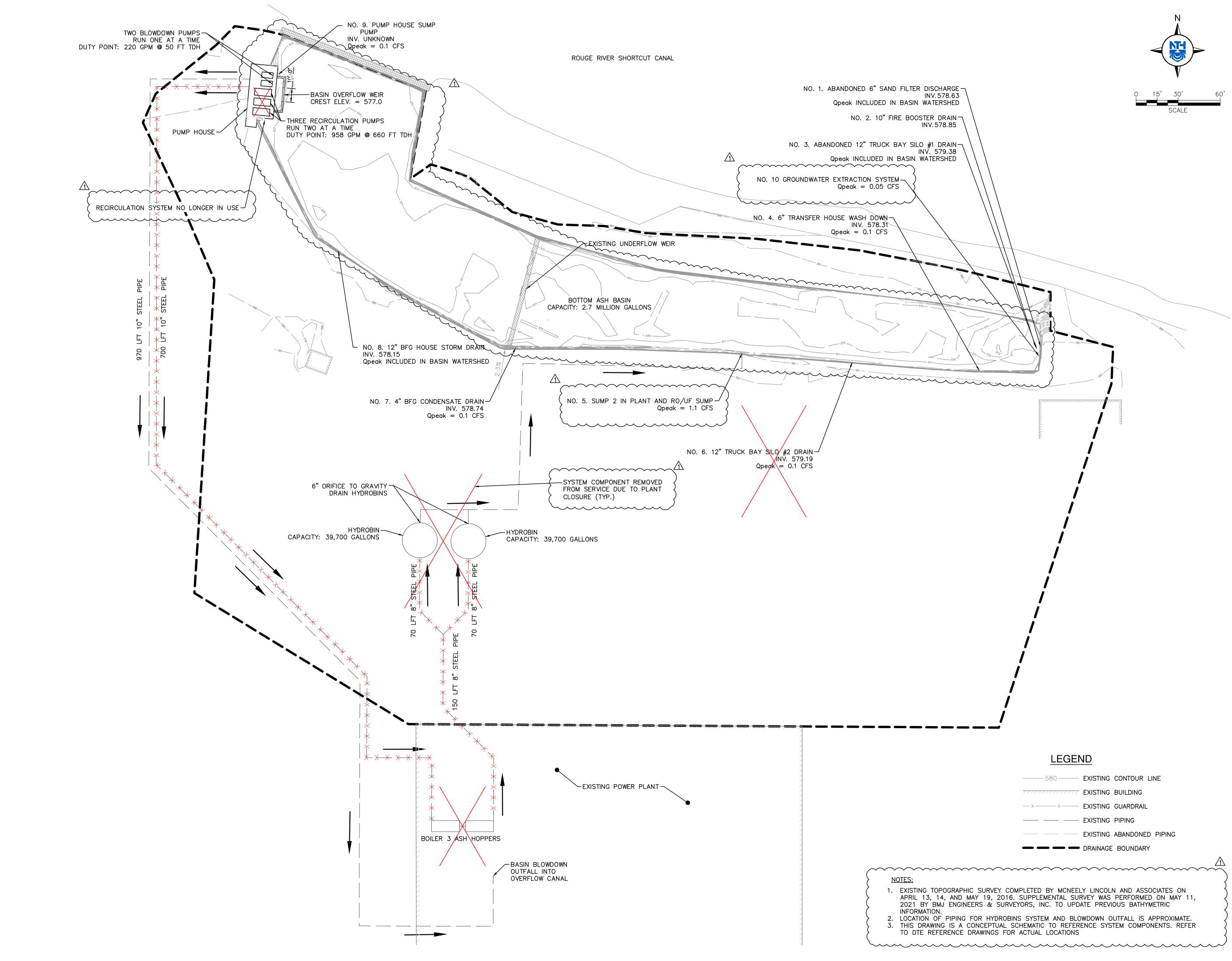


Photograph 7: Pump House and Overflow Weir Looking West from North Side of Basin

Photograph 8: Pump House Sump Pump Looking West from North Side of Basin




<u>NOTES:</u> VERTICAL DATUM: DTE PLANT DATUM (ORIGIN UNKNOWN)


HORIZONTAL DATUM: DTE PLANT DATUM (ORIGIN UNKNOWN)

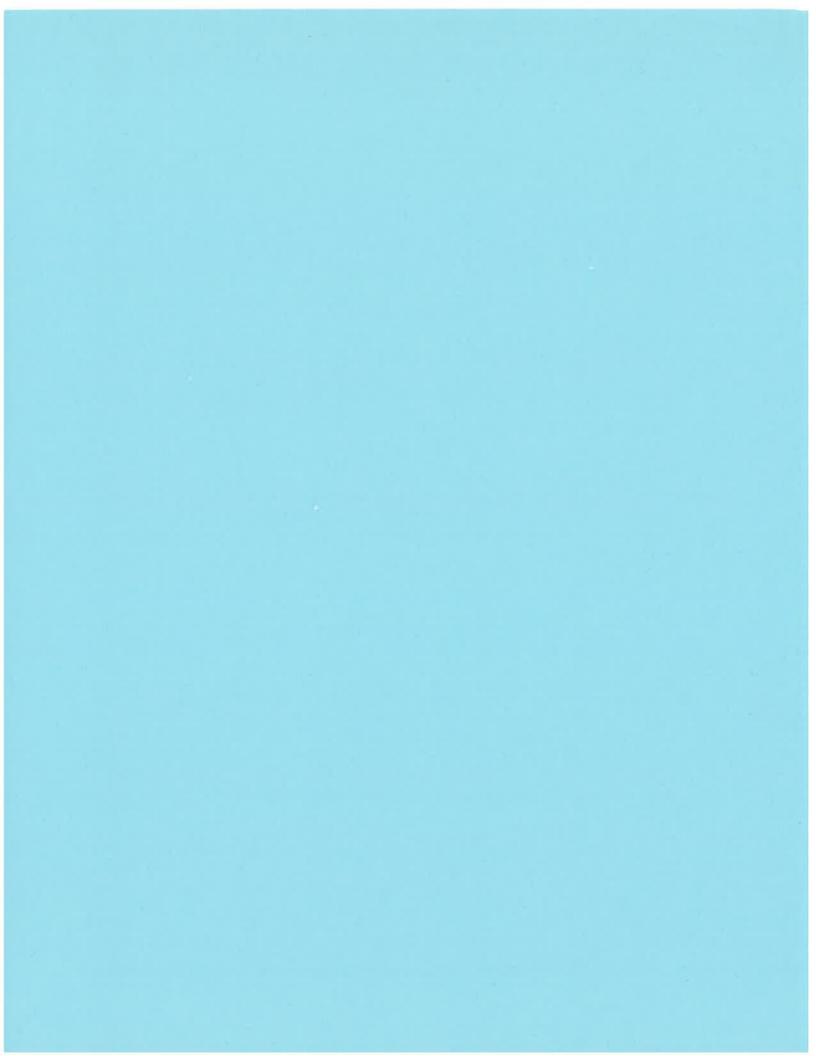

<u>BENCHMARK:</u> DESCRIPTION: ATOP CUT "X" IN STEEL SEAWALL NEAREST TO THE SOUTHEASTERLY MOST CORNER OF CONCRETE WALL OF ASH BASIN PUMP HOUSE AT THE WEST END OF ASH SETTLING BASINS ± 0.5 ' FROM WALL & ± 1 ' FROM END OF SEAWALL. ELEVATION = 580.22 (PLANT DATUM)

<u>WATER_LEVEL</u> ELEVATION = 577.93 (PLANT DATUM)

NTH Consultants, Ltd.

Infrastructure Engineering and Environmental Services

248.553.6300
313.237.3900
517.484.6900
616.451.6270
216.334.4040


REV	DESCRIPTION	DATE	B
1	5-YR PERIODIC ASSESSMENT	9/7/2021	DG

DTE RIVER ROUGE **POWER PLANT - BOTTOM** ASH BASIN HYDRAULIC ANALYSIS

PROJECT LOCATION:

RIVER ROUGE POWER PLANT DETROIT, MICHIGAN

	NTH PROJECT NO.:	CAD FILE NAME:
	62-210081	210081-RR-SP
	DESIGNED BY:	INCEP DATE:
	SLG	9/7/2016
	DRAWN BY:	DRAWING SCALE:
	SLG	1" = 30'
	CHECKED BY:	SUBMITTED DATE:
	DRL	9/7/2021
_	SHEET TITLE:	\wedge
\sum_{i}	$\sim\sim\sim\sim$	
<u>`</u>	RIVER ROUGI	
>	RIVER ROUGE	
> >	RIVER ROUGI	
> > >	RIVER ROUGE	
> > > >	RIVER ROUGE	ER BOTTOM
> > > >	RIVER ROUGE PLANT FORM ASH BASIN EXISTING SYS	
	RIVER ROUGE PLANT FORM ASH BASIN	
	RIVER ROUGE PLANT FORM ASH BASIN EXISTING SYS	ER BOTTOM

Existing System Model Output

Autodesk® Storm and Sanitary Analysis 2016 - Version 13.2.202 (Build 0)

* * * * * * * * * * * * * * * *

Analysis Options ******

Flow Units	cfs
Subbasin Hydrograph Method.	Rational
Time of Concentration	SCS TR-55
Return Period	25 years
Link Routing Method	Hydrodynamic
Storage Node Exfiltration	None
Starting Date	JUL-29-2016 00:00:00
Ending Date	JUL-29-2016 02:00:00
Report Time Step	

* * * * * * * * * * * * * * * *

Subbasin Summary *****	
Subbasin	Total
	Area
ID	ft²
Sub-01	229940.29

* * * * * * * * * * * *

Node Summary ************ Node

Element

Invert Maximum Ponded External

Existing System Model Output

ID	Туре	Elevation ft	Elev. ft	Area ft²	Inflow		
Jun-06 Out-01 Ash-Basin Weir-Structure	JUNCTION OUTFALL STORAGE STORAGE	575.83 590.67 564.83 573.33	576.33 591.17 579.80 579.50	0.00 0.00 0.00 0.00	Yes		
* * * * * * * * * * * *							
Link Summary **********							
Link ID	From Node	To Node	Element Type	Lengt f	t [°] %	Manning's Roughness	
Blowdown-Outfal Blowdown-1 Ash-Basin-Weir	.lOut-01 Weir-Structure	Jun-06	CONDUIT TYPE3 PUMP WEIR	970.		0.0130	

* * * * * * * * * * * * * * * *	* * * * * *	Derekh /	ra i al e le	N	Q		Decision
Link ID	Shape	Depth/ Diameter	Width	No. of Barrels	Cross Sectional Area	Full Flow Hydraulic Radius	Design Flow Capacity
		ft	ft		ft²	ft	cfs
Blowdown-Outfal	.1 CIRCULAR	0.50	0.50	1	0.20	0.13	0.69
**************************************	Continuity	Volume acre-ft	Depth inches				
Total Precipita Continuity Erro	tion	0.504 0.147	1.145				
**************************************	ontinuity		Volume Igallons				
External Inflow External Outflo Initial Stored Final Stored Vo Continuity Erro	vw Volume plume	0.240 0.078 22.239 22.830 -0.000	0.078 0.026 7.247 7.440				

Existing System Model Output

Runoff Coefficient Computations Report

Subbasin Sub-01

Soil/Surface Description	Area	Soil	Runoff
	(ft²)	Group	Coeff.
-	189049.25	-	0.85
-	40890.83		0.90
Composite Area & Weighted Runoff Coeff.	229940.07		0.86

Sheet Flow Equation

 $Tc = (0.007 * ((n * Lf)^{0.8})) / ((P^{0.5}) * (Sf^{0.4}))$

Where:

Tc = Time of Concentration (hrs)
n = Manning's Roughness
Lf = Flow Length (ft)
P = 2 yr, 24 hr Rainfall (inches)
Sf = Slope (ft/ft)

Shallow Concentrated Flow Equation

 $V = 16.1345 * (Sf^{0}.5) (unpaved surface)$ $V = 20.3282 * (Sf^{0}.5) (paved surface)$ $V = 15.0 * (Sf^{0}.5) (grassed waterway surface)$ $V = 10.0 * (Sf^{0}.5) (nearly bare & untilled surface)$ $V = 9.0 * (Sf^{0}.5) (cultivated straight rows surface)$ $V = 7.0 * (Sf^{0}.5) (short grass pasture surface)$ $V = 5.0 * (Sf^{0}.5) (woodland surface)$ $V = 2.5 * (Sf^{0}.5) (forest w/heavy litter surface)$ Tc = (Lf / V) / (3600 sec/hr)

Where:

Tc = Time of Concentration (hrs) Lf = Flow Length (ft) V = Velocity (ft/sec) Sf = Slope (ft/ft)Channel Flow Equation _____ $V = (1.49 * (R^{(2/3)}) * (Sf^{0.5})) / n$ R = Aq / Wp Tc = (Lf / V) / (3600 sec/hr)Where: Tc = Time of Concentration (hrs) Lf = Flow Length (ft)R = Hydraulic Radius (ft) $Aq = Flow Area (ft^2)$ Wp = Wetted Perimeter (ft) V = Velocity (ft/sec) Sf = Slope (ft/ft)n = Manning's Roughness _____ Subbasin Sub-01 _____

User-Defined TOC override (minutes): 10.00

Subbasin Runoff Summary

Subbasin ID	Accumulated Precip in	Rainfall Intensity in/hr	Total Runoff in	Peak Runoff cfs	Weighted Runoff Coeff	Time of Concentration days hh:mm:ss
Sub-01	1.14	4.58	0.98	20.79	0.860	0 00:15:00

* * * * * * * * * * * * * * * * * *

Node Depth Summary ******

Node ID	Average Depth Attained	Maximum Depth Attained	Maximum HGL Attained		of Max Irrence	Total Flooded Volume	Total Time Flooded	Retention Time
	ft	ft	ft	days	hh:mm	acre-in	minutes	hh:mm:ss
Jun-06	22.17	73.56	649.39	0	00:03	0	0	0:00:00
Out-01	0.30	0.32	590.99	0	00:03	0	0	0:00:00
Ash-Basin	13.61	13.72	578.55	0	02:00	0	0	0:00:00
Weir-Structure	5.10	5.21	578.54	0	02:00	0	0	0:00:00

* * * * * * * * * * * * * * * * *

Node Flow Summary *******

Node ID	Element Type	Maximum Lateral Inflow cfs	Peak Inflow cfs	Peak Occu	ime of Inflow rrence hh:mm	Maximum Flooding Overflow cfs	Time of E Flood Occurre days hh	ling
Jun-06 Out-01 Ash-Basin Weir-Structure	JUNCTION OUTFALL STORAGE STORAGE	0.00 0.00 22.23 0.00	0.49 0.51 22.77 41.71	0 0 0 0	00:00 00:03 00:15 00:00	0.00 0.00 0.00 0.00		

Storage Node Summary

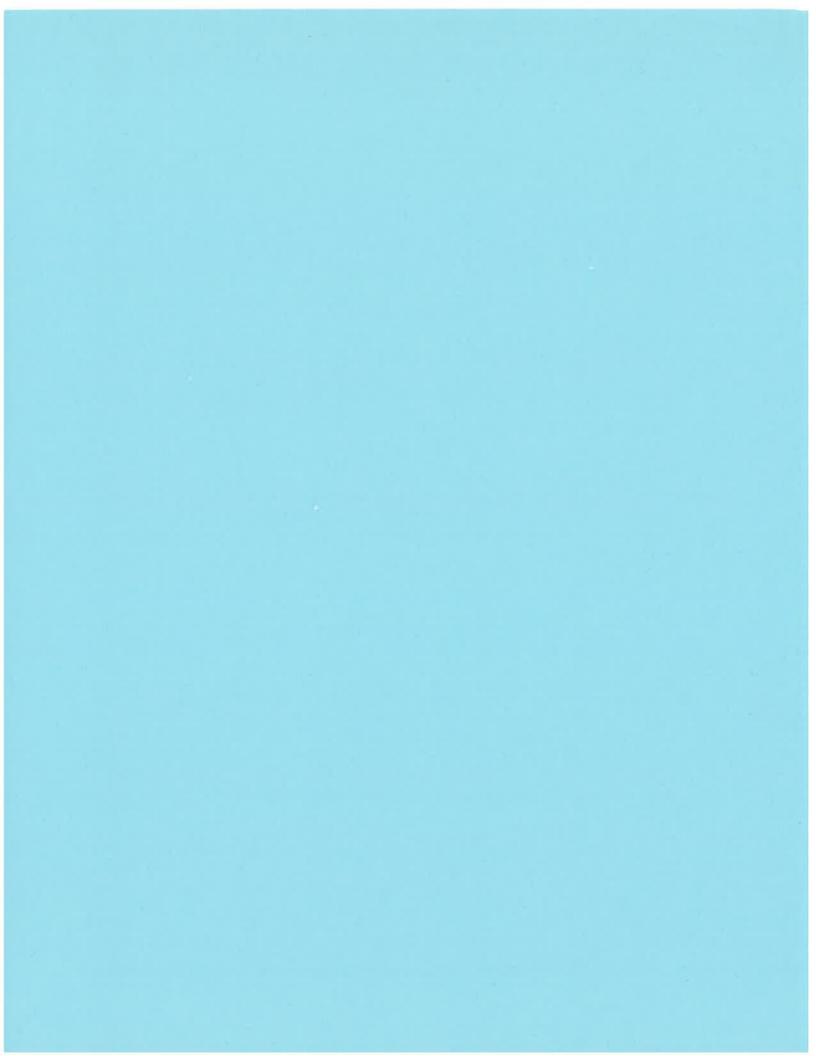
Storage Node ID	Maximum Ponded Volume 1000 ft ³	Maximum Ponded Volume (%)	Time of Max Ponded Volume days hh:mm	Average Ponded Volume 1000 ft ³	Average Ponded Volume (%)	Maximum Storage Node Outflow cfs		Time of Max. Exfiltration Rate hh:mm:ss	Total Exfiltrated Volume 1000 ft ³
Ash-Basin	993.265	94	0 02:00	987.471	93	41.71	0.00	0:00:00	0.000
Weir-Structure	1.107	83	0 02:00	1.080	81	5.42	0.00	0:00:00	0.000

Existing System Model Output

Outfall Loading Summary

Outfall Node ID	Flow Frequency (%)	Average Flow cfs	Peak Inflow cfs
Out-01	96.74	0.49	0.51
System	96.74	0.49	0.51

* * * * * * * * * * * * * * * * * *

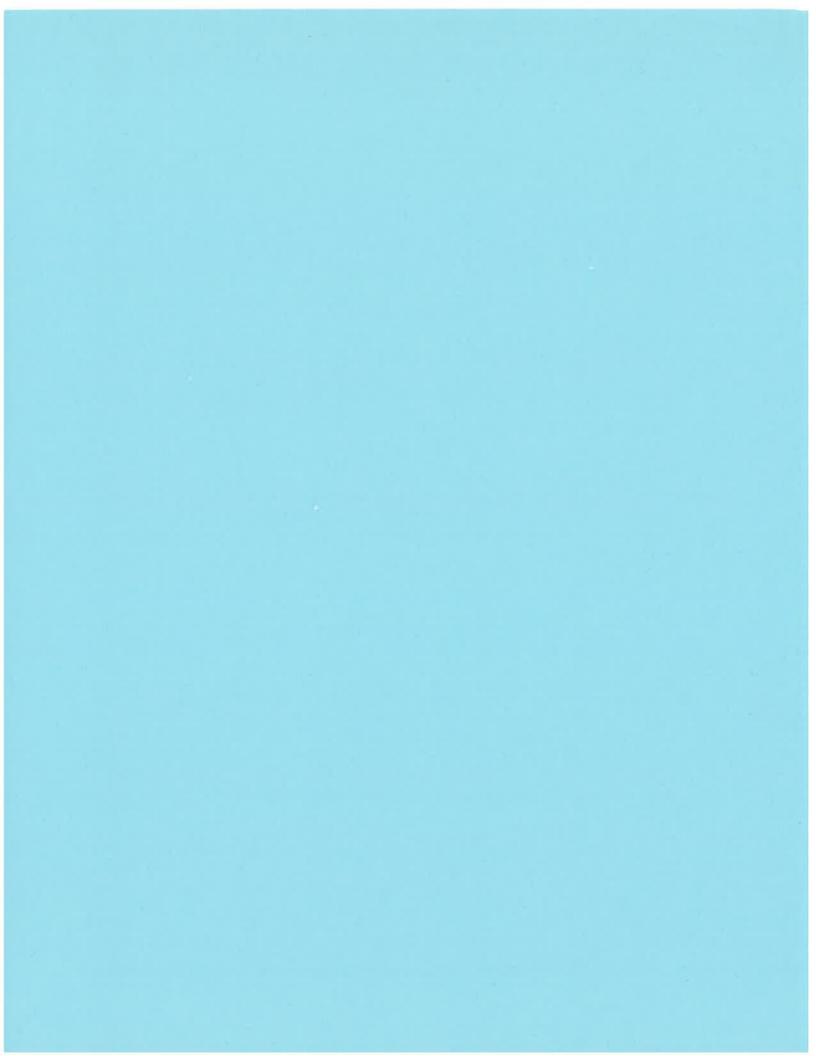

Link Flow Summary

Link ID	Element Type	Time of Peak Flow Occurrence days hh:mm	Velocity Attained	-	Peak Flow during Analysis cfs	Design Flow Capacity cfs	Ratio of Maximum /Design Flow	Maximum		Reported Condition
Blowdown-Outfall Blowdown-1 Ash-Basin-Weir	CONDUIT PUMP WEIR	0 00:03 0 00:00 0 00:00	2.98	1.00	0.51 0.49 41.71	0.69	0.73 1.00	0.81	0 120	Calculated

Highest Flow Instability Indexes

Analysis began on: Tue Sep 14 16:55:56 2021 Analysis ended on: Tue Sep 14 16:55:56 2021 Total elapsed time: < 1 sec

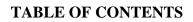
STATEMENT OF CERTIFICATION


I, David R. Lutz, a Professional Engineer licensed in the State of Michigan, certify¹ that NTH Consultants, Ltd. have reviewed available historical information, conducted a field visit, performed engineering and hydraulic/hydrologic analysis, modeling, and calculations on the inflow design flood control system for the former bottom ash CCR surface impoundment at the DTE River Rouge Power Plant, located in River Rouge, Michigan. To the best of my knowledge and belief, the analysis and documentation presented in this report for the former bottom ash basin at the aforementioned facility is accurate and has been developed in substantial conformance with the requirements stipulated in 40 CFR Part 257.82.

David R. Lutz, P.E. State of Michigan Professional Engineer Registration No. 57487

S:\Shared\0 Working Documents\62-210081_DTE CCR Basin Re-Certification\730 Reports\RRPP Memo\05 Certification Statement.docx

^([1]) I am rendering my professional opinion based on the information available to me at the time of this report's writing. This certification does not comprise a guarantee or warranty that certain conditions exist, nor does it relieve any other party of their requirements to abide by all applicable local, state, and federal regulations, and to honor all express or customary guarantees and warranties associated with their work.


Report

Inflow Design Flood Control System Plan River Rouge Power Plant River Rouge, Michigan

DTE Energy Company One Energy Plaza, Detroit, MI

October 14, 2016 NTH Project No. 62-160047-04

INTRODUCTION Regulatory Basis	1 1
MODELING OF CCR IMPOUNDMENT SYSTEM	2
Model Input	2
Model Input Assumptions	5
Existing System Components	7
Model Output	8
Analysis of Design Flood Event – Existing Conditions	8
CONCLUSIONS	9
STATEMENT OF CERTIFICATION	11
ATTACHMENTS	

REFERENCE DOCUMENTS

NH ()

INTRODUCTION

NTH Consultants, Ltd. (NTH), in conjunction with personnel from DTE Energy Company (DTE), has completed an inflow design flood control system plan for the bottom ash basin at River Rouge Power Plant (RRPP) in accordance with the Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals (CCR) from Electric Utilities 40 CFR Part 257.82. This plan details the hydraulic and hydrologic capacity of the CCR impoundment system, including the basin, intake structures, and downstream hydraulic structures. The intent of the plan is to ensure that the CCR impoundment has the capacity to manage the discharge from the process flows along with a specified design rainfall event "inflow design flood", based on the hazard potential classification of the basin.

The RRPP was constructed in the 1950's on the southern shore of the Rouge Short Cut Canal, along the west bank of the Detroit River. The bottom ash basin is a physical sedimentation basin, located north of RRPP near the Rouge Short Cut Canal and receives bottom ash and other process flow effluent pumped from the power plant. Prior to entering the bottom ash basin, the sluiced ash is pumped to two decanting hydrobin structures. The sluiced ash then gravity drains from the hydrobins to the bottom ash basin. Discharge water from the basin flows over an overflow weir and into a weir box structure before going to a below-grade pump station on the west side of the basin. There are two sets of centrifugal pumps in the pump station; one set recirculates the sluice water back into the plant and the other set pumps it to the outfall in the overflow canal with other site storm and process water effluent authorized via a National Pollution Discharge Elimination System (NPDES) permit. An overall site plan is included as Figure 1, in the attachments.

Regulatory Basis

In accordance with 40 CFR Part 257.82, NTH has prepared this inflow design flood control system plan to demonstrate and document the hydrologic and hydraulic capacity and performance requirements for the bottom ash CCR surface impoundment. Specifically, this plan details how the bottom ash CCR surface impoundment collects and controls the peak

discharge from the inflow design flood, in addition to the peak discharge into the impoundment from plant process flow. The inflow design flood requirements for the capacity evaluation depend on the hazard potential classification of the basin in accordance with 40 CFR 257.82(a)(3). The basin at RRPP is not required to be classified in accordance with 40 CFR 257.73(a)(2), since it is an incised CCR impoundment based on the definition prescribed in 40 CFR 257.53. Because of this, the RRPP bottom ash CCR surface impoundment system is being analyzed to handle a 25-year flood event in addition to the plant process flows. As stipulated in Section VI (H)(3) of the rule preamble, the plan also includes a:

- Characterization of the design storm, catchment area, run-on and run-off routing models;
- Characterization of the intake, decant, and spillway structures and their capacity;
- Characterization of the downstream hydraulic structures which receive the discharge from the CCR surface impoundment; and
- Supporting engineering calculations and analysis results.

MODELING OF CCR IMPOUNDMENT SYSTEM

NTH evaluated the bottom ash CCR surface impoundment system using the Autodesk [®] Storm and Sanitary Analysis 2017 computer modeling software. This software was used to develop runoff hydrographs, or temporal flow distribution models, for the watersheds contributing to the system as well as to route the inflow hydrographs through the bottom ash CCR impoundment and conveyance structures.

Model Input

In order to compile the data necessary for input into the model, NTH conducted several steps including:

• Performed a site visit to meet DTE personnel, learn about the DTE assets, and field review the existing system conditions;

- Reviewed historic site drawings and flow data provided by DTE plant staff; and
- Procured ground surface topographical elevations by McNeely & Lincoln Associates (MLA), a registered land surveyor, on April 13, 14, and May 19, 2016. MLA also sounded the bottom of the basin to allow for accurate capacity calculations and surveyed components of the system, including the basin, the weir and box structure, and pipe inverts (see Figure 2 for the detailed survey information).

NTH performed the analysis using design precipitation data adopted from the National Oceanic Atmospheric Administration (NOAA) Atlas 14, Volume 8, Version 2 (2013). We evaluated the bottom ash CCR surface impoundment system for a 25-year storm event and utilized the rational method to calculate the storm water runoff generated from each of the sub-watersheds. The rational method determines the peak discharge rate from each sub-watershed based on the following equation:

$$Q = CiA$$

Where:

Q = Peak discharge rate (cubic feet per second (CFS))

C = Runoff coefficient (presented in table below)

i = Rainfall intensity from IDF curves based on design storm return period and Tc (in/hr)

A = Sub-watershed drainage area (Acres)

We determined the contributing runoff amount for the basin through review of the existing ground topography and historical drawings, and through site visits performed at the RRPP. We assumed the CCR bottom ash basin system collects all stormwater in the vicinity of the basin on the north side of the plant. The contributing area, time of concentration, and runoff coefficient were determined for the watershed area. These input parameters are used to determine both the amount and intensity of runoff generated in the watershed during the design storm and the overall amount of runoff collected and conveyed by the storm water system (see Figure 3 for depiction of drainage area).

The time of concentration, Tc, is the time required for the entire watershed to contribute runoff to the system and is dependent on flow path, slope and ground type. Based on state-of-the-practice engineering standards, we utilized a minimum Tc of 15 minutes for the watershed, which is the minimum amount of time used in a typical analysis, even though the actual flow time may be much less. The model was allowed to run for a 2-hour duration to allow enough time for all of the storm water runoff from the design storm to contribute to the CCR impoundment and the downstream structures.

The runoff coefficient is a function of land use and ground condition. We adopted runoff coefficients from our past experience and generally-acceptable industry standards. The runoff coefficients used for this study are summarized in the following table:

Ground Type	Runoff Coefficient (C)
Grass	0.30
Pavements/Parking Lots	0.90
Compacted Gravel Covered Areas	0.85

We selected the hydrodynamic routing method in Storm and Sanitary Analysis software program because it is the most sophisticated method and produces the most theoretically accurate results. It solves the one-dimensional Saint-Venant flow equations which consists of continuity and momentum equations for pipes and ditches and a volume continuity equation at the storage nodes and junctions. This routing method can represent pressurized flows when the piping becomes full and can model the amount of flooding in storage nodes and junctions.

See Figure 3 in the attachments, which depicts the CCR system and contributing drainage areas based on the results of our field survey and investigation, and review of historical site drawings. Refer to the model output results in the attachments for additional input information.

Model Input Assumptions

NTH utilized information obtained from topographic surveys, historical information, and field investigations to build the model of the CCR impoundment and conveyance network. When available, items such as pipe diameter, inverts, and material of construction were utilized to accurately model the conveyance network.

Additionally, NTH obtained one year of historical flow data for the blowdown pumps from DTE plant staff to characterize a portion of the process flow out of the bottom ash CCR surface impoundment system. This included daily flow readings from an electronic integrator to measure process flows going to the outfall. NTH, working with DTE staff at RRPP attempted to determine appropriate parameters for the peak inflows for the current inlets into the bottom ash basin shown in Table 1 and depicted in Figure 3.

Reasonable assumptions for some of the input parameters were made to develop a complete system model due to absence of detailed information from DTE plant staff and historical documents for some flows and components of the system. In general, these assumptions related to some inlet flow rates, piping lengths within the plant, and watershed topographic information that was not confirmed by DTE staff, the field investigation, or review of historical information provided by DTE.

While every attempt was made to accurately model the existing system, assumptions introduce unknown parameters into the model. If any of these assumptions are incorrect, the results of the model will be impacted. Should actual conditions vary from the assumptions utilized in the model, the predicted model results, and subsequent recommendations to correct any deficiencies identified, may be impacted. We have relatively high confidence that the model for the CCR impoundment and conveyance structures depicts the most conservative anticipated conditions during the modeled flood event.

Table 1: Flow Rates of Existing Inlets into the RRPP Bottom Ash Basin							
No.	Pipe	Diameter (inches)	Invert	Flow Rate (cfs)	Frequency		
1	Sand Filter Discharge	6	578.63	*Abandoned, stormwater flow included in basin watershed	Storm events		
2	Fire Booster Drain	10	578.84	**5.6	Once a month for an hour		
3	Truck Bay Silo #1 Drain (?)	12	579.38	*Abandoned, stormwater flow included in basin watershed	Storm events		
4	Transfer House Wash Down	6	578.31	0.1	Sporadically		
5	Ash Settling Bins Drain	12	579.05	 (a) 4.26 from the bottom ash basin recirculation pumps (b) 1.07 from Sump 2 in plant (c) 0.04 from RO/UF Sump 	Twice daily		
6	Truck Bay Silo #2 Drain	12	579.19	0.1	During washdowns		
7	BFG Condensate Drain	4	578.74	0.1	Unknown		
8	BFG House Storm Drain	12	578.15	Gravity-fed Stormwater flow already included in basin watershed	Storm events		
9	Pump House Sump Pump	3	Unknown	0.1	Storm events		

Table 1: Flow Rates of Existing Inlets into the RRPP Bottom Ash Basin

*DTE staff provided information that the lines were abandoned, but during the site visit NTH observed visible flow coming out of the pipes. It is assumed that the pipes are collecting stormwater even though they are not receiving process flows anymore and the flow amount is included in the watershed area for the basin.

** NTH assumed the fire booster flow is not present during the analysis because it is highly unlikely that DTE will test the fire booster pump during a 25-year storm event in addition to the peak process flows occurring simultaneously.

Existing System Components

The bottom ash basin at RRPP was originally an open excavation with 2H:1V inclination side slopes, but the basin was reconstructed in place in 1998 with tied-back steel sheet pile walls. Sluice water containing bottom ash enters on the south side of the basin through a 12-inch underground pipe, which is gravity fed from the bottom ash hydrobins. There are eight other pipes along the south and east sides of the basin contributing stormwater and process water from various places in and around the plant, as described in Table 1 and shown in Figure 3. DTE staff-provided flow data for the blowdown pumps for the past year, which indicated a peak outfall rate from these pumps of 0.93 cubic feet per second (cfs). The basin has a capacity of 2.3 million gallons.

The basin discharges over an overflow weir into a box structure on the west side of the basin. The weir spans ten feet and the box structure flows into two separate intakes for the recirculation and blowdown pumps. The three recirculation pumps are Goulds model 3735-3736 with an operating duty point of 958 GPM flow rate at a total dynamic head (TDH) of 660 feet. The pumps are run manually by DTE staff two at a time when the ash needs to be sluiced from the ash hoppers (generally twice per day). The two basin blowdown pumps are Goulds model 3196 MT with an operating duty point of 220 GPM at 50 feet TDH. The pumps are run manually by DTE staff one at a time when the basin gets to an elevation of 577'-8" (one foot below top of sheet pile at 579'-8") and discharge to the overflow canal within the plant.

The recirculation pumps send the water overflow to the bottom ash hoppers in the plant where the recirculation water is used to clean the bottom ash out of the hoppers. The sluiced bottom ash is then sent to two hydrobin decanting structures for primary treatment, where the bottom ash settles out and the water is drained through 6-inch orifices back to the bottom ash basin through the 12-inch gravity drain line for secondary treatment in the basin. Each hydrobin has a capacity of 39,750 gallons per historical drawings provided by DTE. Refer to Figure 3 for a schematic of the bottom ash CCR impoundment and conveyance system at the RRPP.

Model Output

The model produces output from the basin watershed that includes inflow, outflow, peak outflow rate, and total runoff inflow/outflow volumes. The model also provides output from the CCR impoundment and conveyance structures including peak flow rates / velocities, maximum hydraulic grade lines, flow depths, and flooding/surcharged structures. To determine where system deficiencies exist, the results were analyzed for:

- Locations where the modeled water surface elevation exceeded the rim/ground surface elevation at the basin and manholes (i.e. Flooding);
- 2. Locations were the modeled water surface exceeded the crown of the pipes within the manholes (i.e. Surcharging); or
- Locations where the anticipated flow in a conveyance structure was greater than its design capacity (i.e. flow is > capacity).

While items noted as surcharging or below capacity identify a system deficiency, this does not necessarily warrant upgrades or improvements. These system deficiencies show that the system is still operating, but as a pressure flow system, instead of a gravity flow system. If no flooding is observed, the flow is still contained within the conveyance system, and the modeling software calculates theoretically accurate downstream and upstream system results based on the operating condition of these components.

Analysis of Design Flood Event – Existing Conditions

The modeled results show that the bottom ash CCR surface impoundment and conveyance system at the RRPP are operating as a pressure flow system. During the design flood event, the depth of the water within the basin rises 1.64 feet above the crest elevation of the weir (elevation 577.0 feet), which still provides approximately 1.16 feet of freeboard in the basin to the top elevation of the basin, slightly above the industry standard freeboard. The weirs can

manage the peak flow produced by the design flood and peak process flow of 26.5 cfs from the process water and stormwater runoff contributing to each basin, with a maximum calculated capacity of 131.6 cfs (see Weir Capacity Calculation for details).

We note that the operating water level of the basin (and subsequent freeboard available) is critically dependent on the operation and functionality of the blowdown pumps, which are manually pumped at a rate of 0.5 cfs/pump, generally one pump at a time. The model depicts the pumps running in a continuous operation to maintain the operating level in the basin during the 2-hour analysis duration. Based on information provided by DTE staff, the blowdown pumps are manually turned on or off by DTE personnel when they observe the basin level at a high level. The flow capacity of the blowdown pump is only approximately 2% of the modeled inflow into the basin from the contributory watershed and nine inlets.

Historically, the basins have performed well and, according to DTE personnel, have never flooded in adverse conditions. There is some freeboard in the basins to account for a reasonable level of unforeseen incidents in the event additional flow into or restricted flow downstream of the basins occurs. DTE staff also inspects the bottom ash CCR impoundment system weekly and after significant rain or storm events to remediate any observed issues as soon as practical.

The model output result file provides additional information regarding the output and results. Refer to Figure 3 for additional information on the existing bottom ash CCR surface impoundment components.

CONCLUSIONS

NTH has prepared this inflow design flood control system plan to demonstrate and document the hydrologic and hydraulic capacity and performance requirements for the bottom ash CCR surface impoundment of the RRPP in accordance with 40 CFR 257.82.

The existing bottom ash CCR impoundment system at RRPP currently conveys both bottom ash and other plant process water and on-site stormwater. The overall hydraulic system comprises the hydrobins, the bottom ash basin, overflow outfall weir, pumps and downstream piping. Our analysis indicates that there are no current deficiencies for the bottom ash CCR surface impoundment or downstream conveyance structures, as modeled, at the RRPP that warrant upgrades or improvements to the CCR surface impoundment or downstream conveyance structures.

STATEMENT OF CERTIFICATION

I, David R. Lutz, a Professional Engineer licensed in the State of Michigan, certify¹ that NTH Consultants, Ltd. have reviewed available historical information, conducted a field visit, performed engineering and hydraulic/hydrologic analysis, modeling, and calculations on the inflow design flood control system for the bottom ash CCR surface impoundment at the DTE River Rouge Power Plant, located in River Rouge, Michigan. To the best of my knowledge and belief, the analysis and documentation presented in this report for the bottom ash basin at the aforementioned facility is accurate and has been developed in substantial conformance with the requirements stipulated in 40 CFR Part 257.82.

David R. Lutz, P.E. State of Michigan Professional Engineer Registration No. 57487

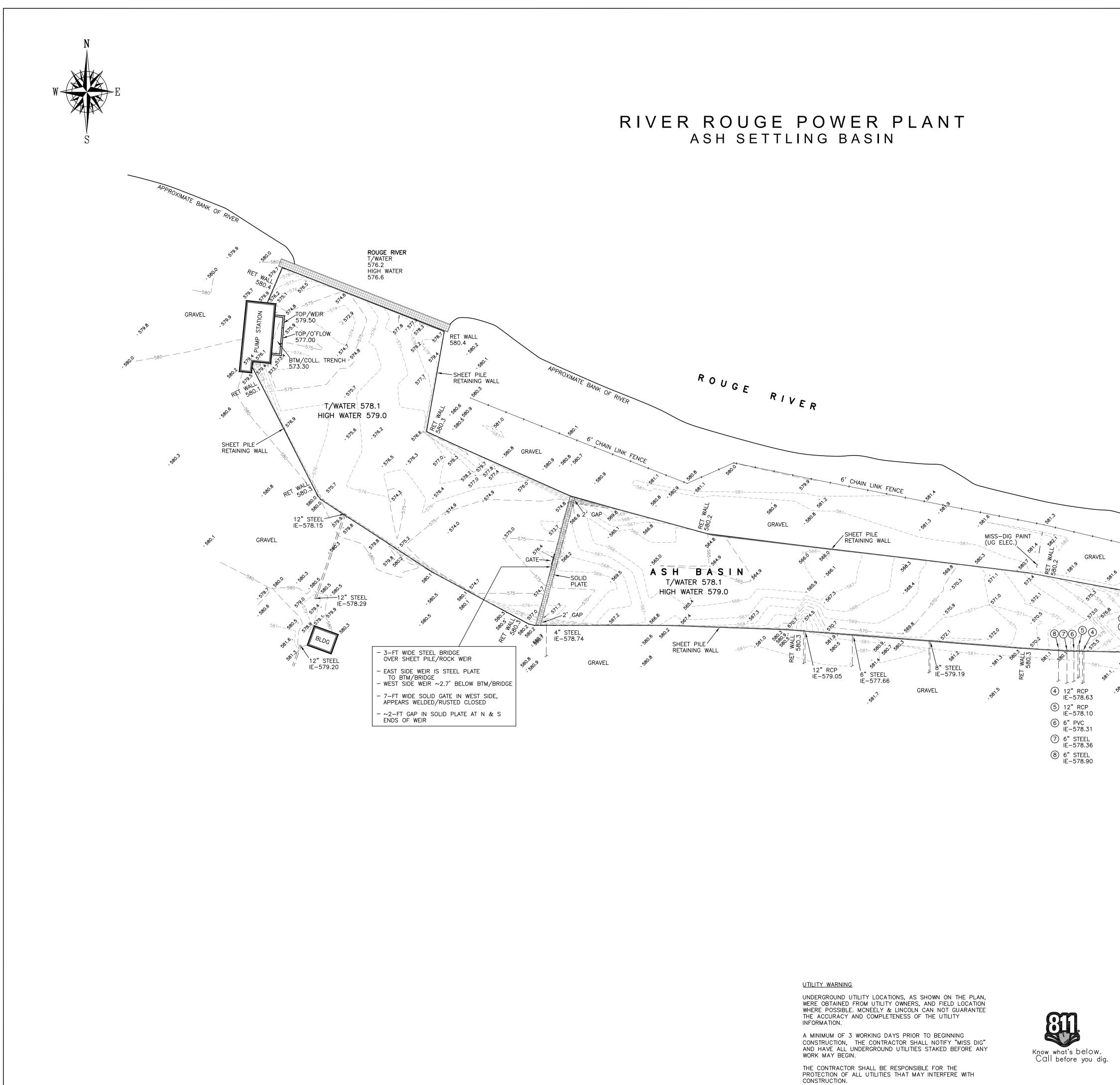
O:\Active PROJ/62-160047_DTE River Rouge, St. Clair Belle River PP/730/04/003-1014-RRPP-RPT.doc

^([1]) I am rendering my professional opinion based on the information available to me at the time of this report writing. This certification does not comprise a guarantee or warranty that certain conditions exist, nor does it relieve any other party of their requirements to abide by all applicable local, state, and federal regulations, and to honor all express or customary guarantees and warranties associated with their work.

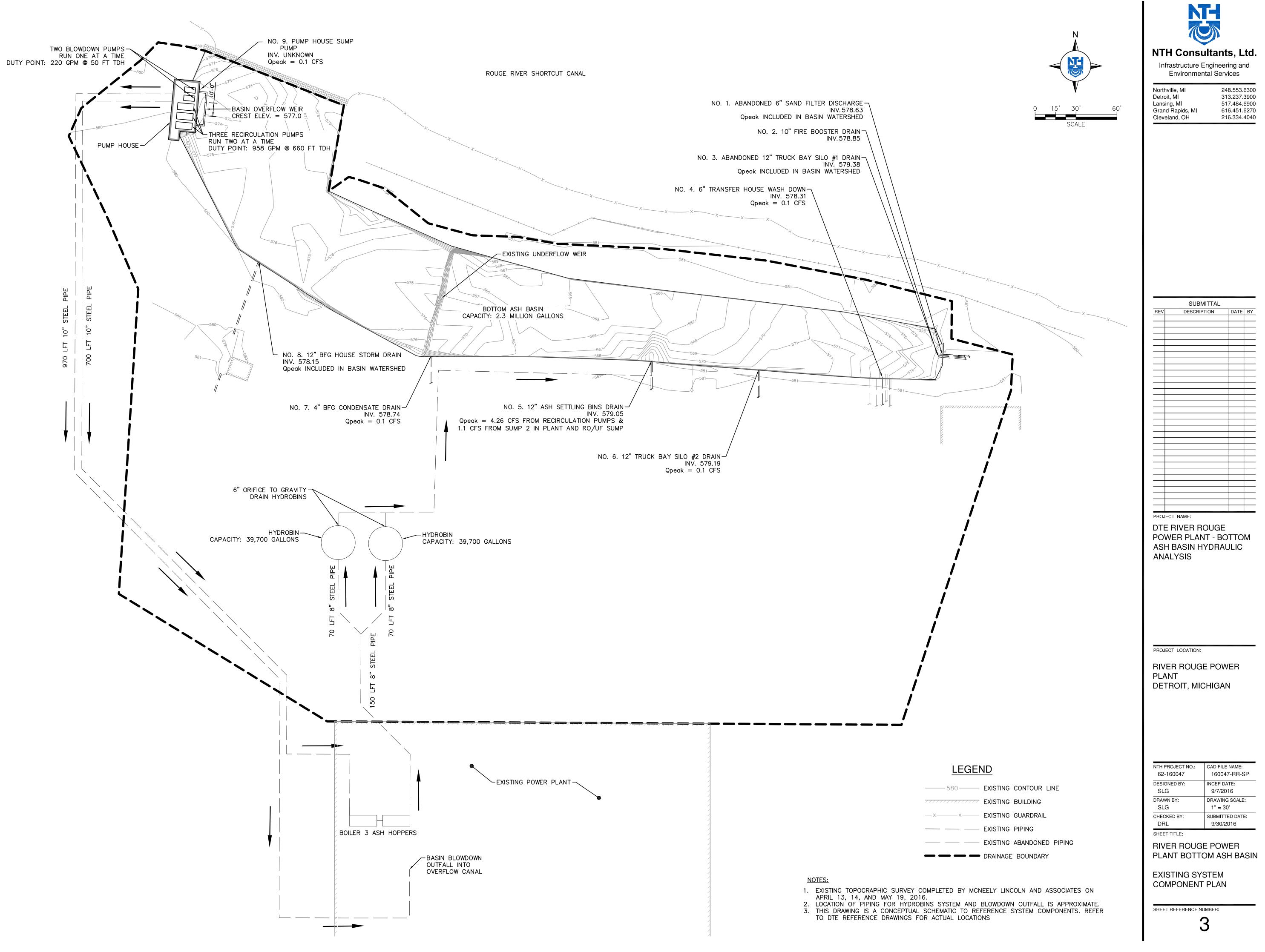
ATTACHMENTS

- Figure 1: Overall Site Plan
- Figure 2: Topographic Survey
- Figure 3: Existing System Component Plan
- Weir Capacity Calculation
- Time of Concentration Calculation
- Autodesk Storm and Sanitary Analysis Model Outputs

REFERENCE DOCUMENTS

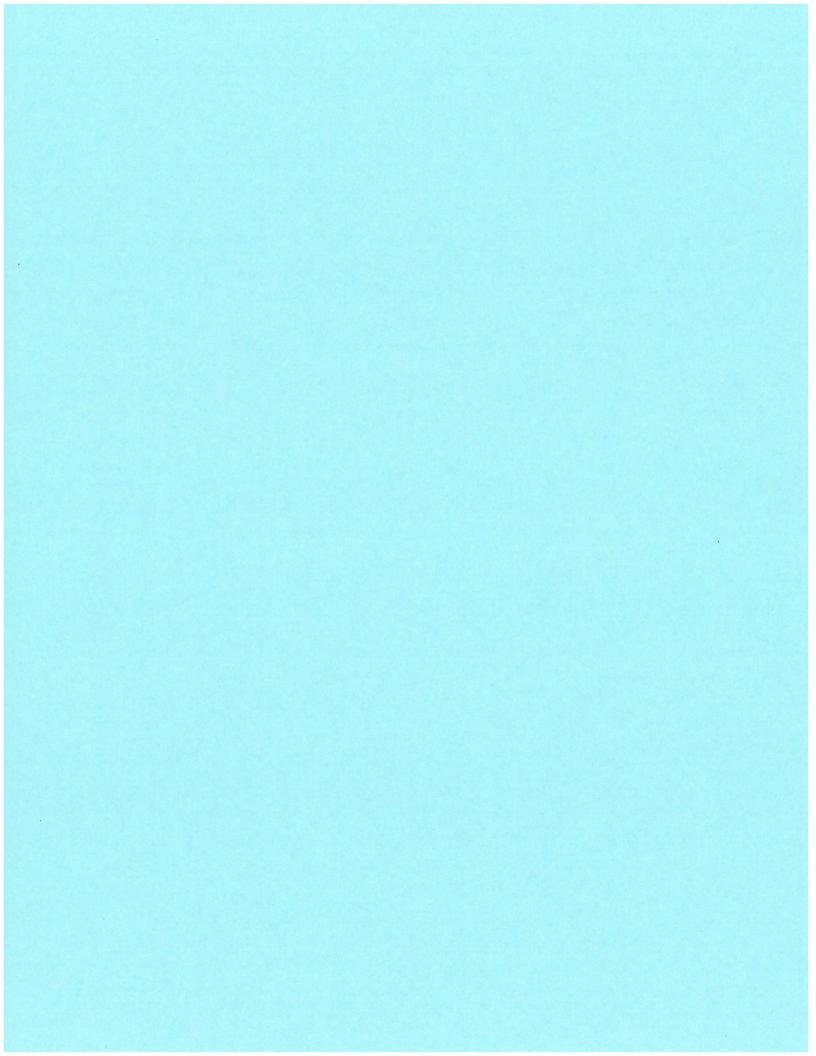

- 6MS515-55 "GENERAL YARD MAP"
- 6C515C-33 "LAYOUT OF ASH SETTLING BINS FOR THE BOTTOM ASH OF BOILER NO. 3"
- 7P515-491 "PIPING-ASSEMBLY-LAYOUT OF LINES BELOW EL. 609'-0" BETWEEN "C" & "G" ROW OF COLUMNS, BOILER NO. 3"
- 6M515-406 "LAYOUT OF BOILER ASH HOPPER FOR FOSTER WHEELER BOILER NO. 3"
- 6M515-408 "LAYOUT OF THE BOTTOM ASH SLUICE LINES FOR FOSTER WHEELER CORP. BOILER NO. 3"
- 6M515-261 "GENERAL LAYOUT OF BOILER ASH HOPPER FOR BOILDER NO. TWO"
- 6M515W-15 "REROUTING OF BOILER HOUSE FLOOD DRAINS INTO OILY AND ASH WASTE SYSTEM"
- 6M515W-18 "DETAILS OF DRAIN PIPING IN BOILERHOUSE FOR SGREGATION OF FLOOR DRAINS"
- 6S515Q-2001-003 "SITE UNDERGROUND RELOCATION"
- BLOWDOWN PUMP FLOW YEAR 2015

ATTACHMENTS


- FIGURE 1: OVERALL SITE PLAN
- FIGURE 2: TOPOGRAPHIC SURVEY
- FIGURE 3: EXISTING SYSTEM COMPONENT PLAN
- WEIR CAPACITY CALCULATION
- TIME OF CONCENTRATION
 CALCULATION
- AUTODESK STORM AND SANITARY
 ANALYSIS MODEL OUTPUT

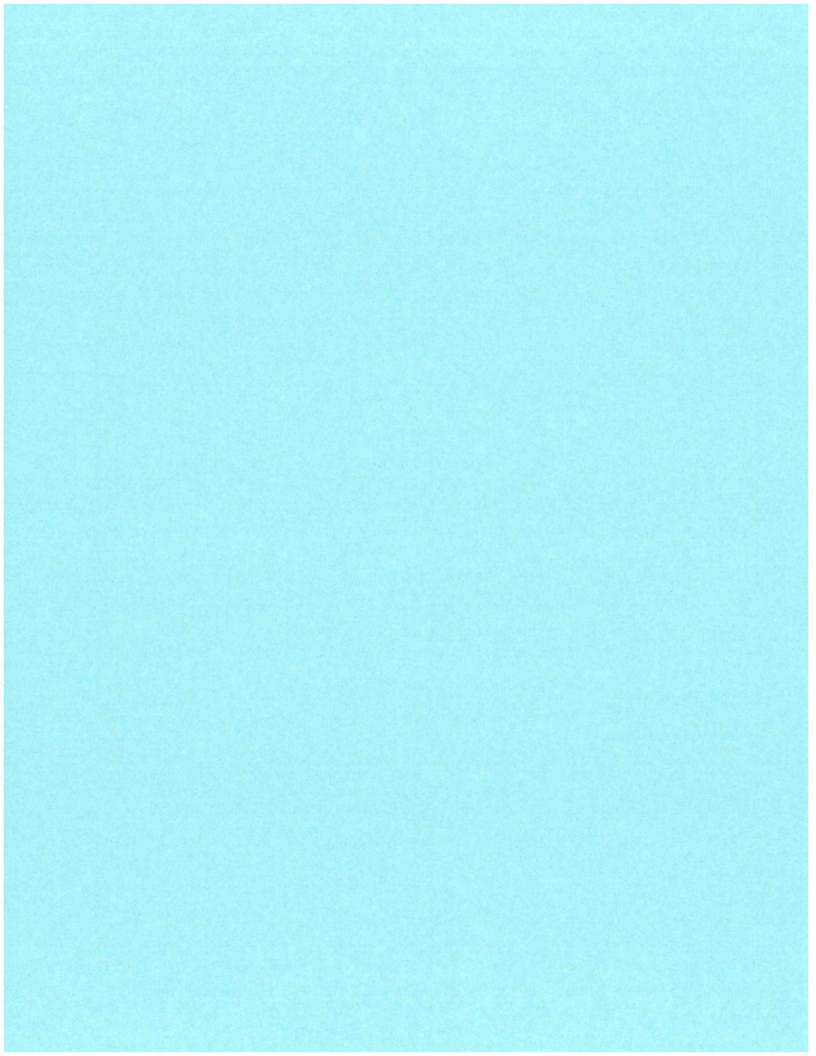
NTH PROJECT No.: 62-160047	CAD FILE NAME: 160047-RRPP			FIGURE:
DESIGNED BY: SLG	PLOT DATE: 9/30/2016	NTH Consultants, Ltd.	SITE LOCATION PLAN	
DRAWN BY: SLG	DRAWING SCALE: 1" = 200'	Infrastructure Engineering and Environmental Services	RIVER ROUGE POWER PLANT	
CHECKED BY: DRL	INCEPTION DATE: 9/7/2016		RIVER ROUGE, MICHIGAN	-

		CLIENT: CLIENT: NTH CONSULTANTS, LTD. 41780 SIX MILE RD NORTHVILLE, MI 48168 FIELD BK: 06/27/16 SUR BY: TFS/GW DRWN BY: DPW CHKD BY: MRD FIELD BK: 840
		McNEELY & LINCOLN ASSOCIATES, INC. CIVIL ENGINEERING & LAND SURVEYING PH. (734) 432–9777 FAX (734) 432–9786 37741 PEMBROKE, LIVONIA, MICHIGAN 48152
APPROXIMATE BANK OF RIVER		
NTH FIGURE 2	PROFESSIONAL SURVEYOR SURVEYOR SURVEYOR SURVEYOR SURVEYOR SURVEYOR SURVEYOR SURVEYOR SURVEYOR SURVEYOR SURVEYOR SURVEYOR	TOPOGRAPHIC SURVEY – ASH BASIN RIVER ROUGE POWER PLANT PART OF PRIVATE CLAIM 45 CITY OF RIVER ROUGE, WAYNE CO., MICH.
DATUM INFORMATION: HORIZONTAL DATUM = DTE PLANT DATUM ORIGIN UNKNOWN VERTICAL DATUM = DTE PLANT DATUM ORIGIN UNKNOWN	0 7.5 30 60 90 SCALE: 1 INCH = 30 FEET	SCALE: 1" = 30' PROJECT NO.: 8243.02 FILE NAME: 8243.02 FILE NAME: 8243.02 CHEET 1 OF 1


NTH Consultants, Ltd.

Infrastructure Engineering and Environmental Services

100 DTE Hydro Analysis	Project No. 62-160047	Sheet No.
Subject RRPP Weir	BY SLG	Date 9/21/2016
Capacity Calculation	Checked By KBD	Date 9/28/2016


Calculate capacity of weir for RRPP bottom ash
basin
Use broad-crested weir equation

$$Q = C_{sb}H^{3/2}$$

 $C_{s} = 3.33 \text{ ft}^{0.5}/\text{sc}$
 $b = 10 \text{ ft}$
 $H = 25 \text{ ft}$
 $Q = 3.33^{\text{ft}^{0.5}/\text{sc}} \cdot 10 \text{ ft} (2.5 \text{ ft})^{3/2} = \overline{|13| \cdot |0|} \text{ cfs}$
Height of water at maximum flaw vale
 $Q \max = 27.3 \text{ cfs}$
 $Q = C_{sb}H^{3/2} \Rightarrow H = (\frac{Q}{(sb)})^{2/3} = (\frac{27.3 \text{ cfs}}{(3.33 \text{ ft}^{0.5}/\text{sc} \cdot 10 \text{ ft})})^{2/3}$
 $\overline{|H = 0.89 \text{ ft}|}$

L = distance in feet S = slope in % T = time of travel in hours = L / (V * 3600)	Tc (hrs.) Tc (min.) V=0.48*sqrt(S)-Sheet Flow<300'	V=2.1*sqrt(S)-Channel Flow	
<u>– « –</u>	Tc (min.) V=	V= 0.7	12.2
	Tc (hrs.)	0.011	0.203
	Channel Flow		
	Overland Flow	30 2.30 0.73 0.011 248 0.50 0.34	0.203
r Plant	NO	L (ft) S (%) V (ft/s) T (hrs) L (ff) S (%) V (ft/s)	T (hrs)
DTE River Rouge Power Plant Drainage Areas 62-130590	Area #	RR Basin	Ľ

J:\2016\62\160047\Project Information\Calcs\Storm\River Rouge\Tc calcs.xlsx

Existing System Model Output

Autodesk® Storm and	d Sanitary	Analysis	2016 - Ver	Version 11.1.	.55 (Build]	1)
*********	*					
Project Description ************	*					
File Name		River Rouge-with fewer pumps-no operational	-with few	ver pumps-no	o operation	all controls.SPF

Analysis Options						
Flow Units Subbasin Hydrograph Method Time of Concentration		cfs Rational SCS TR-55 25 vears				
Link Routing Method		amio	0			
Starting Date Ending Date Report Time Step	:::	JUL-29-2016 JUL-29-2016 00:00:10	02:00:00			

Element Count *************						
bas es ks	ins	1 9 11				

Subbasin Summary ***************						
Subbasin	Total	al				
ID	Area It ²	rea ft²				
Sub-01	229940.29	29				

Node Summary						
Node	Element		Invert	Maximum	Ponded	External

Autodesk Storm and Sanitary Analysis

Existing System Model Output

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								
ft ft<	ID	Type	Elevation	Elev.	Area	Inflow		
JUNCTION 575.83 576.33 0.00 vos JUNCTION 577.83 577.33 0.00 vos JUNCTION 577.83 577.33 0.00 vos JUNCTION 575.83 577.33 0.00 vos JUNCTION 576.83 577.33 0.00 vos JUNCTION 576.83 577.33 0.00 vos STOBACE 579.50 530.00 vos 0.00 STOBACE 573.33 579.50 0.00 vos STOBACE 579.33 579.50 0.00 vos STOBACE 570.40 10.00 vos 500.130 STOBACE 10.00 70.0 1.00 vos Metallout-01 Jun-2 Jun-2 Jun-2 Jun-2			ft	ft	£τ²			
JUNCTION 514.84 0.00 JUNCTION 514.82 57.24 0.00 JUNCTION 554.82 57.24 0.00 JUNCTION 554.82 57.24 0.00 JUNCTION 554.82 57.24 0.00 JUNCTION 554.82 57.25 0.00 STORAGE 574.93 579.17 0.00 STORAGE 579.50 635.17 0.00 STORAGE 573.33 579.50 0.00 STORAGE 573.33 579.50 0.00 Total 579.50 0.00 Yes From Node To Node Element Length Stope Mathematic Jun-2 Jun-1 70.0 1.0143 0.0130 Jun-2 Jun-1 Jun-1 70.0 1.0143 0.0130 Jun-2 Jun-1 Jun-2 Jun-3 0.0130 0.0130 Jun-2 Jun-1 Jun-2 Jun-3 0.0144 0.013169 Jun-2	Jun-06	JUNCTION	575.83	576.33	0.00			
JUNCTION 664.42 665.26 0.00 JUNCTION 564.42 605.26 571.33 579.50 0.00 STORAGE 671.33 579.50 571.17 0.00 Yes STORAGE 671.33 579.50 571.33 579.50 0.00 STORAGE 677.33 579.50 571.33 579.50 0.00 STORAGE 677.33 579.50 0.00 Yes 0.00 STORAGE 677.33 579.50 0.00 Yes 0.010 STORAGE 677.33 579.50 0.00 Yes 0.010 STORAGE 677.33 579.50 0.00 Yes 0.010 STORAGE 70.0 47.0143 0.0130 0.0130 Dural Ton-0 Type Internet Internet Internet Mathodi Jun-2 Jun-3 Jun-3 Jun-3 Jun-3 Jun-3 Jun-2 Jun-3 Jun-3 Jun-3 Jun-3 Jun-3 Jun-3 </td <td>Jun-1</td> <td>JUNCTION</td> <td>574.00</td> <td>574.84</td> <td>0.00</td> <td></td> <td></td> <td></td>	Jun-1	JUNCTION	574.00	574.84	0.00			
UNCTION 577.33 577.33 577.33 577.33 0.00 0.00 Ves STORAGE 564.83 579.50 597.87 0.00 0.00 Ves STORAGE 564.83 579.50 579.50 0.00 Ves STORAGE 567.33 579.50 579.50 0.00 Ves STORAGE 567.17 0.00 Ves 579.50 0.00 Ture STORAGE 579.50 0.00 Ves 579.50 0.00 Ture STORAGE 579.50 0.00 Ves 579.50 0.00 Ture STORAGE 579.50 0.00 Ves 579.50 0.00 Ture STORAGE 573.33 579.50 0.00 Ves 500 Ture Jun-06 Ture Jun-1 90.01 1.00.01 0.0130 Nutcobin-1 Jun-2 CONDUIT 90.01 97.013 0.0130 Nutcobin-3 Jun-2 CONDUIT 90.01 0.0130 0.0130 Nutcobin-4 Jun-3 J	Jun-2	JUNCTION	604.42	605.26	0.00			
OUTEALL 590.67 59.17 0.00 Yes a STORAGE 654.83 579.50 0.00 Yes a STORAGE 674.83 579.50 0.00 Yes a STORAGE 674.83 579.50 0.00 Yes a STORAGE 679.50 635.17 0.00 Yes a STORAGE 679.50 0.00 Yes Maning's a STORAGE 679.50 0.00 Yes Maning's a STORAGE 679.50 0.00 Yes Maning's a STORAGE 579.50 0.00 Yes Maning's a STORAGE 579.50 0.00 Yes Maning's a Yorobin-4 Jun-2 CONDUT 70.0 47.0143 0.0130 AND-Basin Watcobin-4 Jun-3 Jun-3 ONLFICE Maning's Lit Xet Yes -OriticeNaycobin-4 Jun-3 Jun-3	Jun-3	JUNCTION	575.83	577.33	0.00			
STORAGE 564.83 579.80 0.00 Yes a STORAGE 607.159 633.17 0.00 Yes a STORAGE 607.143 0.0130 Yes Yes a Jun-2 CONDUT 970.0 1.5299 0.0130 a Natrobin-4 Jun-2 CONDUT 96.0 0.9426 0.0130 a Ash-Basin Weir-Structure Jun-3 ORAPE Jun-3 Jun-3 <td>Out-01</td> <td>OUTFALL.</td> <td>590.67</td> <td>591.17</td> <td>0.00</td> <td></td> <td></td> <td></td>	Out-01	OUTFALL.	590.67	591.17	0.00			
607.59 635.17 0.00 607.59 635.17 0.00 607.59 635.17 0.00 573.33 579.50 0.00 507.59 635.17 0.00 507.59 635.17 0.00 507.59 635.17 0.00 507.59 635.17 0.00 507.59 635.17 0.00 507.59 635.17 0.00 507.59 635.17 0.00 507.59 635.17 0.00 507.50 0.0130 0.0130 507.51 0.00 3.1687 0.0130 507.51 0.01 341.6 0.9426 0.0130 507.51 0.01 341.6 0.9426 0.0130 507.51 0.0130 170.0 47.0143 0.0130 507.51 0.0130 170.0 47.0143 0.0130 507.51 0.011 0.0130 0.0130 0.0130 507.51 0.011 0.0130	Ash-Basin	STORAGE	564.83	579.80		res		
607.59 635.17 0.00 573.33 579.50 0.00 573.33 579.50 0.00 573.33 579.50 0.00 573.33 579.50 0.00 573.33 579.50 0.00 573.33 579.50 0.0130 Jun-06 CONDUIT 970.0 1.5299 0.0130 Jun-2 CONDUIT 970.0 1.5299 0.0130 Jun-2 CONDUIT 970.0 1.5299 0.0130 Jun-2 CONDUIT 970.0 47.0143 0.0130 Jun-3 CONDUIT 70.0 47.0143 0.0130 Jun-1 TYPE3 PUMP 70.0 47.0143 0.0130 Jun-3 ORIFICE 70.0 47.0143 0.0130 Jun-3 ORIFICE 0.9426 0.0130 0.0130 Jun-3 ORIFICE 0.0143 0.0130 0.0130 Jun-3 ORIFICE 0.0144 0.0130 0.0130 Jun-3	Hvdrobin-3	STORAGE.	607.59	635.17	0.00			
573.33 579.50 0.00 To Node Element Length Slope Manning's Jun-06 Type ft % Roughness Jun-12 CONDUIT 970.0 1.5299 0.0130 Jun-2 CONDUIT 70.0 47.0143 0.0130 Jun-3 ORIFICE 0.0130 0.0130 0.0130 Jun-3 ORIFICE 0.0146 0.0426 0.0130 Jun-3 ORIFICE 0.0130 0.0130 0.0130 Jun-3 ORIFICE Sectional Hydraulic Medic Jun-4 Inters Sectional Hydraulic Medic Jun-3 0.83 1 0.20 0.133 Jun-4 I	Hvdrobin-4	STORAGE	607.59	635.17	0.00			
To Node Element Length Slope Manning's Jun-06 Type ft % Roughness Jun-1 Type ft % Roughness Jun-1 970.0 1.5299 0.0130 Jun-2 CONDUIT 960.0 3.1687 0.0130 Jun-3 CONDUIT 70.0 47.0143 0.0130 Jun-4 TYPE3 PUMP 70.0 47.0143 0.0130 Jun-3 ORIFICE 70.0 47.0143 0.0130 Jun-3 ORIFICE 700 47.0143 0.0130 Jun-3 ORIFICE 700 47.0143 0.0130 Jun-3 ORFICE MMP MP 47.0143 0.0130 Jun	Weir-Structure	STORAGE	573.33	579.50	0.00			
To Node Element Length Slope Manning's Jun-06 Type ft % Roughness Jun-1 Type 970.0 1.5299 0.0130 Jun-2 CONDUIT 970.0 1.5299 0.0130 Jun-2 CONDUIT 970.0 47.0143 0.0130 Jun-2 CONDUIT 70.0 47.0143 0.0130 Jun-2 CONDUIT 70.0 47.0143 0.0130 Jun-3 ORIFICE 70.0 47.0143 0.0130 Jun-3 ORIFICE 70.0 47.0143 0.0130 Jun-3 ORIFICE Mor <of< td=""> Full Flow De Jun-3 ORIFICE Jun-3 0.0130 1.00 Jun-3 ORIFICE Mor.of Full Flow De <td>*******</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></of<>	*******							
To Node Element Length Slope Manning's Type Element Length Slope Manning's Name Type Element ft ft % Roughness Type 0.0130 Jun-06 CONDUIT 970.0 1.5299 0.0130 Jun-2 CONDUIT 70.0 47.0143 0.0130 0.0130 Jun-2 CONDUIT 70.0 47.0143 0.0130 0.0130 ft Jun-3 CONDUIT 70.0 47.0143 0.0130 ft Jun-3 CONDUIT 70.0 47.0143 0.0130 ft Jun-3 CONDUIT 70.0 47.0143 0.0130 Jun-3 CONDUIT 70.0 47.0143 0.0130 ft Jun-3 CONDUIT 70.0 ft Jun-3	Link Summary *********							
Jun-06 CONDUIT 970.0 1.5299 0.0130 Jun-1 CONDUIT 960.0 3.1687 0.0130 Jun-2 CONDUIT 70.0 47.0143 0.0130 Jun-3 CONDUIT 70.0 47.0143 0.0130 Jun-1 TYPE3 PUMP 341.6 0.9426 0.0130 re Jun-1 TYPE3 PUMP 341.6 0.9426 0.0130 Jun-3 ORIFICE ORLFICE 341.6 0.9426 0.0130 Jun-3 ORIFICE TYPE3 PUMP Meir 0.0130 0.0130 Jun-3 ORIFICE ORIFICE Area Radius Eff Jun-3 ORIFICE Midth No. of Cross Full Flow Van-3 Depth/ Width No. of Cross Full Flow Diameter ft ft 0.50 0.13 It 0.50 0.83 1 0.120	Link ID	From Node	To Node	Element Type	Length		Manning's Roughness	
Jun-1 CONDUIT 960.0 3.1687 0.0130 Jun-2 CONDUIT 70.0 47.0143 0.0130 Jun-3 CONDUIT 70.0 47.0143 0.0130 Jun-3 CONDUIT 70.0 47.0143 0.0130 Jun-3 CONDUIT 70.0 47.0143 0.0130 re Jun-3 CONDUIT 341.6 0.9426 0.0130 re Jun-1 TYPE3 PUMP 341.6 0.9426 0.0130 re Jun-1 TYPE3 PUMP 341.6 0.9426 0.0130 Jun-3 ORIFICE Jun-3 ORIFICE Depth Jun-3 ORIFICE No. of Sectional Hydraulic Depth/ Width No. of Sectional Hydraulic ft ft ft 1 0.20 0.13 0.50 0.50 1 0 0.13 0.13	Blowdown-Outfal	10ut-01	Jun-06	CONDUIT	970.0	1.5299	0.0130	
Jun-2 CONDUIT 70.0 47.0143 0.0130 Jun-3 CONDUIT 70.0 47.0143 0.0130 Jun-3 CONDUIT 70.0 47.0143 0.0130 re Jun-1 TYPE3 PUMP 0.9426 0.0130 re Jun-1 TYPE3 PUMP 0.0130 0.0130 re Jun-1 TYPE3 PUMP 0.0145 0.0130 Jun-3 ORIFICE 0.011 TYPE3 PUMP 0.0130 Jun-3 ORIFICE 0.011 TYPE3 PUMP 0.0130 Jun-3 ORIFICE 0.0111 TYPE3 PUMP 0.0130 Jun-3 ORIFICE 0.0111 TYPE3 PUMP 0.0130 Jun-3 ORIFICE No.of Kull Flow De Jun-3 ORIFICE Midth No.of Kull Flow De Jun-3 Depth/ Width No.of Sectional Hydraulic Capa ft ft 1 0.020 0.013 0.021 0.013 0.50 0.50 1 0.020 0.13 0.13	Recirc-1	Jun-2	Jun-1	CONDULT	960.0	3.1687	0.0130	
Jun-2 CONDUIT 70.0 47.0143 0.0130 Jun-3 CONDUIT 341.6 0.9426 0.0130 re Jun-1 TYPE3 PUMP 0.9426 0.0130 re Jun-1 TYPE3 PUMP 0.0110 0.0130 re Jun-1 TYPE3 PUMP 0.0116 0.0130 Jun-1 TYPE3 PUMP 0.0117 0.0130 0.0130 Jun-3 ORIFICE Jun-3 ORIFICE 0.01130 Jun-3 ORIFICE Jun-4 Pepth Pepth Pepth Meir-Structure WEIR No. of Cross Full Flow Pepth Depth/ Width No. of Sectional Hydraulic Area Radius ft ft ft ft 0.20 0.13 0.13 0.50 0.50 1 0.20 0.13 0.13 0.50 0.50 1 0.20 0.13 0.13 0.50 1 0 1 0.20 0.13	Recirc-2	Hydrobin-3	Jun-2	CONDUIT	70.0	47.0143	0.0130	
<pre> Jun-3 CONDUIT Sum-06 TYPE3 PUMP TYPE3 PUMP TYPE3 PUMP Jun-1 Jun-3 Jun-1 Jun-3 Jun-1 Jun-3 Jun-3 Jun-1 Jun-3 Jun-1 Jun-3 Jun-3 Jun-3 Jun-3 Jun-4 Jun-3 Jun-4 Jun-4 Jun-3 Jun-4 Jun-3 Jun-3 Jun-4 Jun-4</pre>	Recirc-3	Hydrobin-4	Jun-2	CONDUIT	70.0	4	0.0130	
re Jun-06 TYPE3 PUMP re Jun-1 TYPE3 PUMP re Jun-1 TYPE3 PUMP Jun-3 ORIFICE Jun-3 ORIFICE JU	Recirc-4	Ash-Basin	Jun-3	CONDUIT	341.6		0.0130	
re Jun-1 TYPE3 PUMP re Jun-1 TYPE3 PUMP Jun-3 ORIFICE Jun-3 ORIFICE Jun-4 ORI	Blowdown-1	Weir-Structure	Jun-06	TYPE3 PUMP				
re Jun-1 TYPE3 PUMP Jun-3 ORIFICE Jun-3 ORIFICE Jun-3 ORIFICE Depth/ Width No. of Cross Full Flow De Barrels Sectional Hydraulic Area Radius Capa ft ft ft ft ft 0.50 0.50 0.13 0.50 0.50 1 0.20 0.13 1.00 1.00 1 0.79 0.25	Recirculation-1		Jun-1	TYPE3 PUMP				
Jun-3 ORFICE Jun-3 ORFICE Weir-Structure WEIR Depth/ Width No. of Cross Full Flow De Diameter Earrels Sectional Hydraulic Area Radius Capa ft ft ft Coss Full Flow De Barrels Sectional Hydraulic Area Radius Capa 1 0.50 0.50 0.13 0.50 0.50 0.13 0.50 0.50 0.13 1.00 1.00 1 0.020 0.13	Recirculation-2	Weir-Structure	Jun-1	TYPE3 PUMP				
Jun-3 Jun-3 Weir-Structure WEIR Depth/ Width No. of Cross Full Flow De Diameter Barrels Sectional Hydraulic Area Radius ft ft ft 0.50 0.50 1 0.20 0.13 0.83 0.50 1 0.20 0.13 1.00 1.00 1 0.20 0.13 0.25 0.13	Hydrobin-3-Orif.	iceHydrobin-3	Jun-3	ORIFICE				
<pre>Nsh-Basin Weir-Structure WEIR **** mary mary shape Depth/ Width No. of Cross FullFlow De Diameter Diameter Barrels Sectional Hydraulic Area Radius Capa ft ft ft 0.20 0.13 CIRCULAR 0.83 0.83 1 0.20 0.13 CIRCULAR 0.50 0.50 1 0.20 0.13 CIRCULAR 0.50 0.50 1 0.20 0.13 CIRCULAR 1.00 1.00 1 0.79 0.25</pre>	Hydrobin-4-Orif	iceHydrobin-4	Jun-3	ORIFICE				
**** mary mary shape bepth/ Width No. of Cross Full Flow be blameter blameter Area Radius Capa ft ft ft ft Cross Full Flow be Barrels Sectional Hydraulic Area Radius Capa CIRCULAR 0.50 0.50 1 0.20 0.13 CIRCULAR 0.83 0.83 1 0.55 0.21 CIRCULAR 0.50 0.50 1 0.20 0.13 CIRCULAR 0.50 1 0.20 0.13 CIRCULAR 1.00 1.00 1 0.79 0.25	Ash-Basin-Weir	Ash-Basin	Weir-Structure	WEIR				
mary Marray Mo. of Cross Full Flow De Shape Depth/ Width No. of Cross Full Flow De Shape Diameter Barrels Sectional Hydraulic De ft ft ft Radius Capa ft ft ft 0.50 0.50 0.13 CIRCULAR 0.83 0.83 1 0.20 0.13 CIRCULAR 0.83 0.83 1 0.20 0.13 CIRCULAR 0.50 0.83 1 0.20 0.13 CIRCULAR 0.50 0.50 1 0.20 0.13 CIRCULAR 0.50 1 0.20 0.13 CIRCULAR 0.50 1 0.79 0.25	******	*****						
Shape Depth/ Width No. of Cross Full Flow De Diameter Diameter Barrels Sectional Hydraulic De ft ft ft ft Sectional Hydraulic De ft ft ft ft Sectional Hydraulic De ft ft ft ft Sectional Hydraulic Capa ft ft ft ft Sectional	Cross Section S' **********	ummary ******						
Diameter Deficits Description Mydraute ft <	Link	Shape	Depth/	Width	No. of	Cross	Full Flow	Design
ft ft<	11)		DIAMELEL		Barrets	Accilonal	Hydraulic Radius	Capacity
CIRCULAR 0.50 0.50 1 0.20 0.13 CIRCULAR 0.83 0.83 1 0.55 0.21 CIRCULAR 0.50 0.50 1 0.20 0.13 CIRCULAR 0.50 0.50 1 0.20 0.13 CIRCULAR 0.50 1.00 1.00 5 0.13			ft	ft		ft 2	ft	cfs
CIRCULAR 0.83 0.83 1 0.55 0.21 CIRCULAR 0.50 0.50 1 0.20 0.13 CIRCULAR 0.50 0.50 1 0.20 0.13 CIRCULAR 1.00 1.00 1 0.79 0.25	Blowdown-Outfal		0.50	0.50	1	0.20	0.13	0.69
CIRCULAR 0.50 0.50 0.50 0.13 CIRCULAR 0.50 0.50 1 0.13 CIRCULAR 0.50 0.50 1 0.20 0.13 CIRCULAR 0.50 1.00 1 0.29 0.13	Recirc-1	CIRCULAR	0.83	0.83	T	0.55	0.21	3.90
CIRCULAR 0.50 0.50 1 0.20 0.13 CIRCULAR 1.00 1.00 1 0.79 0.25	Recirc-2	CIRCULAR	0.50	0.50	1	0.20	0.13	3.85
CIRCULAR 1.00 1.00 1 0.79 0.25	Recirc-3	CIRCULAR	0.50	0.50	1	0.20	0.13	3.85
	Recirc-4	CIRCULAR	1.00	1.00	1	0.79	0.25	3.46

Autodesk Storm and Sanitary Analysis

Existing System Model Output

***************	Volume	Depth
Runoff Quantity Continuity	acre-ft	inches
Total Precipitation Continuity Error (%)	0.147	1.145
**************************************	Volume acre-ft	Volume Mgallons
External Inflow	0.248	0.081
External Outflow	0.078	0.026
Initial Stored Volume	18.754	6.111
Final Stored Volume	19.352	6.306
Continuity Error (%)	0.000	

Subbasin Sub-01

1/Surface Description	с С ~	Soil Group	Runoff Coeff.
	189049.25		0.85
6	40890.83	l	06.0
Composite Area & Weighted Runoff Coeff.	229940.07		0.86

Sheet Flow Equation

 $Tc = (0.007 * ((n * Lf)^0.8)) / ((P^0.5) * (Sf^0.4))$

Where:

Tc = Time of Concentration (hrs)

n = Manning's Roughness Lf = Flow Length (ft) P = 2 yr, 24 hr Rainfall (inches) Sf = Slope (ft/ft)

Shallow Concentrated Flow Equation

V = 16.1345 * (Sf^0.5) (unpaved surface) V = 20.3282 * (Sf^0.5) (paved surface) V = 15.0 * (Sf^0.5) (grassed waterway surface) V = 10.0 * (Sf^0.5) (nearly bare & untilled surface) V = 9.0 * (Sf^0.5) (cultivated straight rows surface) V = 7.0 * (Sf^0.5) (short grass pasture surface) V = 5.0 * (Sf^0.5) (short grass pasture surface) V = 5.5 * (Sf^0.5) (forest w/heavy litter surface) Tc = (Lf / V) / (3600 sec/hr) $V = (1.49 * (R^{\prime}(2/3)) * (Sf^{\prime}0.5)) / n$ R = Aq / WpTc = (Lf / V) / (3600 sec/hr)Tc = Time of Concentration (hrs)
Lf = Flow Length (ft)
V = Velocity (ft/sec)
Sf = Slope (ft/ft) Channel Flow Equation Where: Where:

Autodesk Storm and Sanitary Analysis

Subbasin Sub-01

Tc = Time of Concentration (hrs) Lf = Flow Length (ft) R = Hydraulic Radius (ft) Aq = Flow Area (ft²) Wp = Wetted Perimeter (ft) V = Velocity (ft/sec) Sf = Slope (ft/ft) n = Manning's Roughness

Existing System Model Output

Existing System Model Output

10.00 User-Defined TOC override (minutes):

Subbasin Runoff Summary *********************

Time of Concentration days hh:mm:ss 0 00:15:00 Peak Weighted Runoff Runoff cfs Coeff 0.860 20.79 Total Runoff in 0.98 Rainfall Intensity in/hr 4.58 Accumulated Precip in 1.14 Subbasin ID Sub-01

ID	Average Depth		Maximum HGL	Occu	Time of Max Occurrence	Flooded	Total Time	Retention Time
	ft	0000		days	hh:mm	acre-in	minutes	hh:mm:ss
Jun-06	22.15	73.56	649.39	0	00:03	0	0	0:00:00
Jun-1	114.49	714.21	1288.21	0	10:00	0	0	0:00:00
Jun-2	47.03	87.28	691.70	0	00:02	0	0	0:00:00
Jun-3	8.56	33.81	609.64	0	00:03	0	0	0:00:00
Out-01	0.30	0.32	590.99	0	00:04	0	0	0:00:00
Ash-Basin	13.68	13.81	578.64	0	02:00	0	0	0:00:00
Hydrobin-3	5.93	6.10	613.59	0	01:20	0	0	0:00:00
Hydrobin-4	5.93	6.10	613.69	0	01:20	0	0	0:00:00
Weir-Structure	5.16	5.31	578.64	0	02:00	0	0	0:00:00

Node Flow Summary ***************

Node	Element	Maximum	Peak	Time of	Maximum	Time of Pea
ID	Type	Lateral	Inflow	Peak Inflow	Flooding	Floodi
		Inflow		Occurrence	Overflow	Occurrenc
		cfs	cfs	days hh:mm	cfs.	days hh:mn

Plant	
Power	
louge	
River F	
DTE	

Existing System Model Output

Jun-06	JUNCTION	0.00	0.49	0	00:00	0.00
Jun-1	JUNCTION	0.00	4.26	0	00:00	0.00
Jun-2	JUNCTION	0.00	4.26	0	00:02	0.00
Jun-3	JUNCTION	0.00	4.26	0	01:20	0.00
Out-01	OUTFALL	0.00	0.51	0	00:04	0.00
Ash-Basin	STORAGE	22.28	26.54	0	00:15	0.00
Hydrobin-3	STORAGE	0.00	2.16	0	00:02	0.00
Hydrobin-4	STORAGE	0.00	2.16	0	00:02	0.00
Weir-Structure	STORAGE	0.00	41.70	0	00:00	0.00

Storage Node ID	Maximum Ponded Volume 1000 ft ³	Maximum Ponded Volume (%)	Time	Time of Max Ponded Volume days hh:mm	Average Fonded Volume 1000 ft ³	Average Ponded Volume (%)	Maximum Storage Node Outflow Cfs	Maximum Exfiltration Rate cfm	Time Exfil h	Total Exfiltrated Volume 1000 ft ³
Ash-Basin	840.797	95	0	02:00	834.847	94	41.70	0.00	0:00:00	0.00.0
Hydrobin-3	0.069	F	0	01:20	0.067	Ţ	2.13	0.00	0:00:00	0.000
Hydrobin-4	0.069	1	0	01:20	0.067	T	2.13	0.00	0:00:00	0.000
Weir-Structure	1.130	85	0	02:00	1.096	82	4.75	0.00	0:00:00	0.000

Outfall Node	ß	Flow Frequency (%)	Average Flow cfs	Peak Inflow cfs
Out-01		96.68	0.49	0.51
System		96.68	0.49	0.51

******************** Link Flow Summary *******************

Existing System Model Output

11 X1111	Element Type	T Peaa Occu days	Time of Peak Flow Occurrence days hh:mm	Maximum Velocity Attained ft/sec	Length Factor	Peak Flow during Analysis cfs	Design Flow Capacity Cfs	Ratio of Maximum /Design Flow	Ratio of Maximum Flow Depth	Total Time Surcharged minutes	Reported Condition
Blowdown-Outfall	CONDUIT	0	00:04	2.98	1.00	0.51	0.69	0.73	0.81	0	Calculated
Recirc-1	CONDUIT	0	00:02	14.96	1.00	4.26	3.90	1.09	1.00	118	SURCHARGED
Recirc-2	CONDUIT	0	00:02	13.33	1.00	2.16	3.85	0.56	77.0	0	Calculated
Recirc-3	CONDUIT	0	00:02	13.33	1.00	2.16	3.85	0.56	17.0	0	Calculated
Recirc-4	CONDUIT	0	00:03	5.67	1.00	4.34	3.46	1.26	0.94	0	> CAPACITY
Blowdown-1	PUMP	0	00:00			0.49		1,00		120	
Recirculation-1	PUMP	0	00:00			2.13		1.00		120	
Recirculation-2	PUMP	0	00:00			2.13		1.00		120	
Hydrobin-3-Orifice	ORIFICE	0	01:20			2.13			1.00		
Hydrobin-4-Orifice	ORIFICE	0	01:20			2.13			1.00		
Ash-Basin-Weir	WEIR	0	00:00			41.70			0.66		

WARNING 002 : Max/rim elevation (depth) increased to account for connecting conduit height dimensions for Node Jun-3.

Analysis began on: Fri Sep 30 10:26:02 2016 Analysis ended on: Fri Sep 30 10:26:02 2016 Total elapsed time: < 1 sec